Skip navigation

Tag Archives: apple

The Power Macintosh G5 series was the end of an era for Apple and the Macintosh. It was one of the last Macs to use the venerable Power PC CPU before moving onto Intel CPU’s which in my opinion made Macs little more then PCs with a custom Apple OS and took away much of their uniqueness for better or worse. The quad core G5 Macintosh was one of the last of the G5 Macs and one of the most powerful. Before we get into the specs keep in mind that older G5 Machines will have differing configurations and this is only a look at one of the last PCs in this line and not a general overview of the entire G5 line..

I’ve frequently seen these cases referred to as “cheese grater” cases due to the front. The case is all aluminum and despite the lighter weight of the metal the thing is very heavy. Being aluminum though it’s likely the case will survive long after all of us are dead, that is unless they all get melted down to make aircraft during WW III. The front of the case is very simple with a single 5 1/4 drive bay near the top for a CD/DVD optical drive and only a few inputs further down on the left.

First is the power button which does light up when pressed and powered on. Next we have a audio headphone jack and finally one USB 2.0 port and below that a Firewire 400 port. The case also has aluminum “feet” on both the bottom and top which are handy for both assisting in carrying the heavy beast of a case as well as keeping it off the ground a little. Be aware that these “feet” are very prone to being crushed if shipped improperly.

Opening the case on the G5 macs is a cinch. on the upper right hand side of the rear of the case is a simple lever. Simply pull it up and the side panel pops off. To the right of the handle are four expansion slots. Most of the rear is taken up by two massive fans and below those is the connector for your power cord.

The connector is, in classic Apple fashion, not quite your usual 3 prong connector as the shape is completely square and the three prongs are fairly flat as opposed to round so you will need a special power connector. Now the power cable used here is not proprietary but it is commonly found on high end sever equipment with high wattage power supplies. I couldn’t really say what advantage this connector type has over the more standard one and I seriously doubt it is needed for the G5 Macintosh so all it really seems to do is be extremely annoying if you happen to lack a compatible power cable and the 50 standard ones you have laying around the house won’t fit.

Starting at the top and going down the G5 has a neat row of various inputs and outputs. First are dual Ethernet ports followed by a Firewire 800 and 400 port. Next are optical audio in and out ports followed by dual 1/8 audio jacks and finally three USB 2.0 ports.

Upon removing the side panel most of the lower section of the case is further covered by a hard clear plastic cover. This is easily removed via a small handle near the top. There is also a badge on the bottom portion of the case that if you are unsure of the exact factory specifications of your model you should be able to find them there.

On the top left is the sole 5 1/4 drive bay which at least factory standard should be occupied with a 16x DVD drive. To the right of this bay are dual 3 1/2 drives for installing hard drives. A 250GB SATA drive was the stock drive but I have added a second drive in the lower “B” bay.

I have seen people install SDD drives in these bays but it may require an adaptor to fit securely or just be installed loose in the bay.

Below these bays are the four expansion slots.

Four slots for expansions cards is pretty anemic for a computer but in all honestly they are all PCI-e and being a Macintosh your not likely going to find you need to install much more then a video card anyways. The four PCI-e slots is actually a nice upgrade from previous models in the G5 line which lacked any PCI-e expansion slots and instead used AGP, PCI and PCI-x. Only the bottom slot is PCI-e x16 so I would suggest installing your video card in the bottom most slot. As far as I can tell there is no option to run either a crossfire or SLI configuration in the G5 Mac.

the G5 Power Mac came stock with the Macintosh version of the Geforce 6600 with 256MB or memory. This card is quite adequate though it is not the mot powerful card the G5 quad can accept and if you want to take some better advantage of what this system has to offer the video card should be one of your first upgrades if possible.

The G5 is somewhat limited on video cards it can accept due to the requirement that cards use a special Apple Mac BIOS and OS drivers. The fastest video card I could find for the G5 Mac quad was the Quadro FX 4500 with 512MB of memory. This card is basically the workstation version of the 7800 GTX and is more or less the same. Upgrading to a FX 4500 gives a noticeable boost to gaming on the G5 though finding a specific Macintosh version of the card can be difficult and/or expensive. Another route you can take is tracking down the much more common PC version of the card and flashing its BIOS to the Mac version.

You will need a specific revision of the PC card with a specific BIOS in order to flash it though. Usually the card with the L bracket on the back are flashable models but always check the BIOS revision to be sure.

Guides on the process such as the one Here can be found with a simple Google search.

Also take note the FX 4500 will require an additional power cable that connects to the motherboard and then to the card as seen below. also seen below is the connector for the IDE cable that goes to the optical drive.

The area of the motherboard below the expansion slots is dominated by the CPU and in this model, water cooling system, which is located behind the “G5” shield. To the left of this is the RAM which we can get a better look at by removing the large gray fan which simply lifts straight out.

The G5 “quad core” came factory with 512MB of DDR2 memory but I have expanded mine to a whopping 16GB of RAM. 16MB of DDR2 is a lot of memory for 2006 when the G5 line was discontinued and when many PC’s were still maxed out at 4GB with Windows XP. I do remember reading that the the jump from DDR memory in all other models of the G5 to DDR2 in the late 2005 models such as the quad core made very little to no performance improvement but I can’t seem to locate the source so I can’t confirm this though I felt it worth mentioning.

Finally we have the CPU or in the case of the Power Mac G5 Quad Core, two CPU’s.

The CPU’s and cooler are under a stylish aluminum shield with a large G5 emblazoned on it so you know what’s under it. The G5 Quad Core sports two separate dual core 2.5GHz G5 Power PC CPU’s under a factory stock water cooled system.

My machine is equipped with a liquid cooling system by Delphi. The Delphi coolers were known to have leakage issues which could corrode and destroy the system. according to Wikipedia Apple started later using a liquid cooling system from Panasonic which was much more reliable. I have found at least one comment in my research that indicated that it was actually the Panasonic cooler used in the 2.7GHz G5 Macs that was unreliable and thus resulted in the apparent scarcity of that model. This also makes sense since the 2.7GHz G5 with the Panasonic cooler seems to of been released in early 2005 where the models with the Delphi coolers were released in late 2005.

There are faster 2.7GHz G5 macs though these machines use two separate single core G5 CPU’s so they may be faster in single threaded applications and games that do not take advantage of multiple cores though the quad core is seen as the fastest overall G5 PC. Its very hard to compare speed wise with Pentium or other X86 processors but I have seen rough equivalency with faster AMD FX processors.

The Power Mac G5 quad core is the king of the G5 line and possibly of the power PC computers in general. It was the end of an era for Apple who after these machines switched over to Intel CPU’s and in my opinion lost some uniqueness. The case for the G5s is durable but be prepared because it is heavy and moving it around is a real pain. The G5s did get a reputation in its day for being fairly good machines for things like video editing but also as a space heater as it tends to give off a lot of heat while in operation. I will say my machine does get a little warm and is loud though I expect the models with fan cooling as opposed to water cooling would be even louder. It should be the king of OS X gaming though unfortunately there aren’t many games that are exclusive to power PC based OS X though .

In my last article I wrote about the iconic IBM 5150. This time we are going to look at another machine of the eighties that is just as, if not more iconic, the Apple IIe. The Apple IIe or Apple II “Enhanced” is the third model of the Apple II line and was released early in 1983. It was the longest produced Apple II and with little doubt the most iconic of the line.

Like many computers of the early 80’s and unlike the IBM 5150, the Apple IIe used specialized chips and was only able to use its own software specifically for the Apple II line. The Apple II was a bit more expandable then some other micro computers such as the Commodore 64 and Tandy CoCo as it does have a number of expansion slots available which we will take a look at once we open the Apple II up.

Keep in mind there were a few revisions of the Apple IIe. Mine appears to be the 1985 “Enhanced IIe” which involved several changes and upgraded chips which we will also talk about a bit later.

All versions of the Apple IIe were the popular at the time “keyboard computers” as in the computer was compact and featured a built in keyboard similar to a Commodore 64 or Tandy CoCo. The image above also features two DISK II 51/4 floppy drives which the Apple IIe was commonly found with. These drives accept 140kb Apple formatted disks.

Lets take a quick look at the monitor I’m using before taking a look at the rear of the apple II and then opening it up.

I am using the 13 inch Apple ColorMonitor IIe which is a composite color monitor that was widely used with the Apple IIe line. Mine is not in the best shape with a chipped power button and a missing front bezel but it works and the image is a good quality, generally higher then a similar consumer TV of the same size and time. There are several adjustment knobs as well as a “white button” which turns the Color IIe into a monochrome monitor.

The connector is a RCA style composite connector located on the rear of the monitor.

Unlike many of the home micro computers of the early 1980’s the Apple IIe line allowed for relatively easy expansion via expansion cards much like an IBM compatible PC. The Apple IIe does have a few built in ports located in the lower left hand corner.

Starting on the left we have a single RCA style composite jack for connecting to a composite color or monochrome monitor like the Apple ColorMonitor IIe or any standard TV with a composite input should work although Wikipedia states the output is “unreliable” and may have varied results when connected to anything besides a monitor.

video modes according to Wikipedia for the Enhanced IIe are as follows

  • 40 and 80 columns text, white-on-black, with 24 lines
  • Low-Resolution: 40×48 (16 colors)
  • High-Resolution: 280×192 (6 colors)
  • Double-Low-Resolution: 80×48 (16 colors)
  • Double-High-Resolution: 560×192 (16 colors

Next to the composite out jack there are dual 1/8 input and output jacks for connecting a tape deck. Lastly is a db-9 joystick port. This port is for Apple compatible paddles and joysticks.

This port is physically compatible with Atari and Genesis joysticks and gamepads but is not electronically compatible and can cause damage if connected.

Above these built in ports taking up expansion port cutouts 1 and 2 are the cables connecting to the dual Disk II floppy drives. Unlike most cards which would have a port on the rear of the card and be exposed on the rear of the computer through the expansion slot the apple II disk II controller card has dual internal pin connectors for the floppy ribbon cables. This means the cables connect to the card and then must be snaked out of the rear of the Apple IIe and to the drives.

Below is a Apple IIe disk II controller card

Down farther from the floppy drive cables at expansion port 6 is my Hayes modem card. I’ve never actually used this card but It came with my Apple IIe

The Apple IIe is relatively easy to open up and the cover can be removed by unclipping the two plastic tabs at the rear and then lifting up.

As I stated earlier my Apple IIe is the Enhanced IIe meaning that 4 chips have been replaced or “upgraded” including the CPU and a three ROM chips in order to make the Apple IIe more compatible with the Apple IIc. These changes did fix a few bugs and increase compatibility with newer software but also introduced some slight incompatibility issues with a few older software titles.

1) CPU – The Enhanced IIe uses the 65C02 processor running at 1.023MHz on an 8-bit bus. This CPU is an enhanced version of the 6502 CPU found in earlier Apple IIe computers and offers bug fixes, lower power draw and some performance improvements.

My Apple has the 65SC02 CPU which is a variant lacking bit instructions.

2) RAM – The Enhanced IIe like the Apple IIe before it comes with 64kb RAM built into the motherboard. This was fairly easy to increase up to 1MB by use of RAM expansion cards.

One common card used for expanding RAM on the Apple IIe was the 80col/64k card. This card when installed in the auxiliary slot on the motherboard added 64k of additional RAM bringing the total system memory up to 128k and allowing 80 column mode to be used.

My Enhanced IIe came with a RAM Works card from Applied Engineering. This card when installed in the auxiliary slot operated exactly like the 80col/64k card except it could upgrade your system memory all the way up to a full 1MB of RAM.

As far as games go I’m not sure any games required or took advantage of more then 128k of memory although several utility/productivity programs either required or ran better with more RAM on the Apple IIe.

3) Expansion slots – The Apple IIe used seven 50-pin Apple IIe Bus slots for expansion. This worked very much the same way as it does on any IBM compatible as you can buy various compatible expansion cards and simply install them in the slots. These cards ranged from the disk drive controller to modems, sound cards and even hard drive controller cards.

4) Auxiliary slot – The Auxiliary card slot is a 60-pin slot designed specifically for certain Apple IIe compatible cards. Primarily these were memory expansion cards but RGB video adaptor cards also used this slot.

5) Various connectors can be found on the right side of the IIe motherboard. The connector labeled “keyboard” is obviously for the built in keyboard cable. The “numeric key pad” connector is for adding an external numeric keypad which you would need to snake the connector cable out one of the various openings on the rear of the computer. Finally the game I/O is simply another internal game joystick/paddle port.

Sound – Sound for the Apple IIe was provided by a simple cone speaker. There were sound cards produced for the Apple IIe line such as the Mockingbird card but very few games seemed to take advantage of these cards.

Upgrades

Besides expanding the memory for my Enhanced IIe to 1MB there was also a few other simple upgrades I was able to try out.

The first was upgrading the dual Disk II drives to something that looked a little better. The dual drives worked fine but I feel like they looked a little crude and having both drives essentially hard wired to the case unless I removed the lid and disconnected them internally from the card made moving the Apple IIe a bit of a chore.

Thankfully in 1983 Apple released the DuoDisk which took two disk II drives and placed them inside a single case which connected to a controller card via a single detachable cable.

The second upgrade I tried was an accelerator card. The card I tried was the Titan Accelerator IIe. The Titan accelerator features the same 65c02 microprocessor as the IIe but this one runs at a blazing 3.58MHz and adds 64k of memory.

My card has a R65C02P4 processor installed which is supposedly running at 4MHz. Unfortunately I didn’t have much working Apple IIe software to do testing at the time but the game Planetfall which I did test did not seem to be running any faster then before and would lock up when landing on the planet while the Titan accelerator was installed.

Since all Apple IIe computers used the same CPU at the same speed rating games by nature were fined tune to operate at 1.023MHz and thus I find using any accelerator in an original IIe to be dubious at best. The added speed may be of benefit with some productivity software but since most of us retro computer enthusiasts primarily enjoy gaming on original hardware I feel like an accelerator may do more harm then good in an Apple IIe by throwing off the timing of games or even flat out locking up or refusing to run software.

The Apple IIe is an iconic computer that any hardware collector needs to have in their collection. The enhanced IIe is a pretty good choice when looking for an Apple II and should play most games and software just fine though keep in mind some older games may not function correctly due to the updated ROMs and CPU.

Unfortunately in the time I had my Enhanced IIe setup I found it getting fairly little use. Although there is a huge number of games available on the Apple II I found myself primarily running their ports on other machines which offered either superior visuals and sound or better ease of use. Despite the huge amount of games for the Apple II there seems to be relatively few exclusive titles and the titles that are exclusive seem to go for large sums of money on sites like eBay.

Previously we have looked at several black and white compact Macintosh computers including the Classic, Classic II and Macintosh SE. Today we are going to take a look at the pinnacle of the B/W compact Mac family, the Macintosh SE/30.

The Macintosh SE/30 was released in 1989 and was a compact mac to rule them all. It offered the power of its larger Macintosh II brothers in a small compact package as well as some future upgradability.

The front of the SE/30 is obviously dominated by its 9-inch 512×346 pixel black and white screen. The quality of this screen is excellent and games designed for the b/w mac look great on this machine. Other then the screen we have a small HDD activity LED hidden within the horizontal lines below the screen. The floppy drive is a 1.44MB drive which on the SE/30 for the first time came standard on a compact mac.

The only dial or button on the face of the SE/30 is a brightness dial for the monitor hidden away below the Apple badge and model name.

First off on the lower left side of the rear is the expansion card plate for certain expansion cards. This SE/30 previously seems to have had a Radius display card but unfortunately the card was removed by the previous owner but the bracket was left behind. To the right of this we have a standard 3-prong power connector and the power switch.

Taking a look at the various ports starting from the lower left we have dual ADB ports for keyboard and mouse. Next to this we have an external floppy drive connector for attaching well, an external floppy drive. Next is an external SCSI port for connecting external SCSI devices such as hard drives and CD-ROM drives. Next is an apple printer and then modem jack and lastly we have a 1/8 stereo audio out jack for connecting headphones or external speakers. Since we are talking about the sound the SE/30 uses an Apple Sound Chip (ASC) including four-voice, wavetable synthesis and stereo sampling generator. The sound coming from the built in internal speaker will be mono but anything through the rear audio jack, wether speakers or headphones will be stereo.

Removing the case reveals the drives and internals.

It is fairly cramped inside but the motherboard is fairly easy to remove as it just slides up and then away. Remember to detach the cables before removing the motherboard though.

The fan header, floppy and SCSI cable and power cable need to be unplugged from the motherboard. Only the power cable may present an issue since it can be a little stubborn and hard to reach. Below the CRT tube is a tray for an optional SCSI hard drive. Generally the SE/30 was sold with either a 40MB or 80MB hard drive installed but the system will take as large as a drive as you can find. I currently have a 300MB hard drive installed. Below the hard drive is a 1.44MB floppy drive.

Above is the motherboard for the SE/30 after being separated from the case. A common point of failure on these boards as with most of the older Macs are the silver surface mounted capacitors. These tend to leak over time but can be replaced with modern equivalents.

1 ) CPU – The CPU is the Motorola 68030 running at 16MHz. This is the same CPU and speed as some of the SE/30’s big brother full sized Macs such as the Macintosh IIx and IIcx. Due to the SE/30’s 32-bit bus it is the fastest of the black and white compact macs being even faster than the Mac classic II which features the same CPU and speed but only ran on a 16-bit bus.

2 ) FPU – One other feature of the SE/30 is the inclusion of an FPU co-processor standard on the motherboard as opposed to being optional. The Motorola 68882 FPU unit helped when performing more complex math functions though like the on the PC I’m not sure it was utilized very often in games. You could argue that an optional FPU socket is a better option since if the FPU fails you can replace it much easier.

3 ) RAM – The SE/30 features eight slots for 30-pin RAM SIMMS. 1MB or seems to of been stock but it’s not unusual to find SE/30’s with 8 to 16MB of memory.

Unofficially the SE/30 can support up to 128MB of RAM using 8 16MB SIMMs. This is a staggering amount of memory for 1989 when this model was released let alone in such a compact machine. I was able to upgrade My SE/30 to 128MB, just be sure to remember afterward to navigate to the memory option in your OS and enable 32-bit memory mode.

4) ROM – The original ROM that came stock with the SE/30 was a 32-bit “dirty” ROM meaning that it still had some 24-bit code. This meant the SE/30 was limited to 8MB of RAM though there was a software solution called Mode32 which allowed 32-bit mode. Both SE/30s I have come across had Mode32 installed and if yours does not the software is freely available with an internet search.

Thankfully the ROM on the SE/30 is not soldered to the motherboard and can be swapped out as easily as if it was a stick of RAM. One way to make your SE/30 32-bit “clean” was to swap the stock ROM out with the ROM from a Macintiosh IIsi or IIfx. For a while I had swapped my ROM with one from a Mac IIsi and it seemed to work fine.

Possibly the best option currently for making your SE/30 32-bit “clean” would be ordering the reasonably priced ROM-inator-II from Bigmessowires. The ROM-inator II is a modern replacement for your SE/30 which makes it 32-bit “clean” but also adds HD20 hard disk support, various utilities and lets your Mac boot to System 7.1 from the ROM.

5 ) PDS slot – The PDS or Processor Direct Slot allowed the SE/30 to accept a number of expansion cards. Something not seen in most of the compact Macs. Various cards such as accelerators and display cards can be added via this slot.

6 ) PRAM battery

7 ) SCSI connector

8 ) floppy connector

9 ) Power connector

10 ) Interrupt and reset buttons

The SE/30 is one of the all time classic Macintosh computers and along with the color classic I and II one of the absolute best compact Macs. The SE/30 has all of the power of a full sized Macintosh II in a much smaller package. With a ROM replacement, a sizable SCSI hard drive and the full 128MB of RAM the SE/30 becomes a monstrous classic Macintosh. The smaller black and white monitor can be a handicap when it comes to games but games designed for the B/W mac look stunning on the monitor and the lack of color even lends itself to the atmosphere of certain games such as the Infocom Macventure series.

re-capped Mac SE/30 motherboard upgraded with ROM-inator II and 128MB of memory

I would highly recommend tracking an SE/30 down if you want a classic compact Mac. You’ll probably never need the 128MB of RAM but I would certainly recommend adding a nice sizable SCSI hard drive or even a SCSI2SD adaptor for storage. I would also highly recommend the very affordable ROM-inator II if only to make your machine 32-bit “clean” and to get that very nice ability to boot from ROM.

SE/30 with external SCSI CD-ROM drive

This slideshow requires JavaScript.

(right-clicking on any image and choosing “view image” will enlarge image)

Todays article we will be looking at the short lived Apple eMate 300. Apple’s late 90’s attempt to fuse the Newton PDA and laptop.

I won’t be taking this unit apart mostly for the reason of I do not actually own this machine and I’m borrowing it, thus I don’t want to risk accidentally damaging it seeing as I’m not very familiar with laptops and such nor do they particularly interest me. that said I didn’t want to pass up an opportunity to feature this interesting and kind of rare machine.

The eMate 300 was briefly sold for less then a year between 1997 and 1998, mostly to the educational market.

The eMate 300 comes in an all translucent green case and If I’m not mistaken is the first Apple computer to use the colored plastic motif that the later iMacs became so well known for. The plastic has actually held up fairly well over time and did not seem brittle to me.

Another thing you may notice is the eMate 300 kind of looks like a butt in tight green spandex. I’ve also been told it looks like a bust line, just the image you want to evoke for a device meant for the educational market…

Lets take a quick look at the specs for the eMate. The screen is a 480×320 resolution grayscale that operates as a touch screen with the use of the stylus. It does have a backlight that can be toggled on and off via a button on the keyboard and sort of resembles the look of the screen on the original Gameboy with the green soup look although the eMate screen does look much better.

There are some nice touches like the holes to place your stylus on either side of the eMates keyboard.

The CPU is a 25MHz ARM 710a RISC processor and the machine comes with 3MB of RAM standard. In a world with several hundred Megahertz Pentium and K6 CPU’s this feels like an extremely underpowered processor in 97/98 but remembering this was not meant to be an actual laptop but a beefed up PDA the power is acceptable for most tasks as far as I could see. Under the battery door there is an expansion slot that did make the RAM expandable via third party cards. There is also a headphone jack and PCMCIA slot on one side so adding things such as wireless and flash memory is possible.

On the opposite side of the eMate is a small sliding panel door that acts as a cover for Macintosh serial/localtalk ports.

Unfortunately I don’t have much else to say about the eMate. It seems like it was a good idea at the time but it never really caught on and sold very well. You could also at the same time buy the more traditional looking Apple Messagepad 2000 which was a more powerful and expandable PDF device.

As far as I know there are no games for the eMate 300 which makes sense as that was not it’s intended use nor does it even sport USB ports or floppy and/or CD drives to help facilitate such things. I did have some fun just mucking around on it. There are some neat features like the art program which lets you draw free form shapes and then the eMate sort of fixes them up. For instance I could draw a rough circle or triangle and the eMate would then adjust my hand drawn shapes to perfect circles and triangles. It was also neat to hand write sentences and then have the eMate transfer the hand written notes into text, although it didn’t always get things right.

Again, The eMate is a neat and pretty rare piece of Apple and computing history but it isn’t really my personnel cup of tea.

In 2002 Apple released the successor to their all-in-one computer, the iMac G3. Originally named the “New iMac” the PC would eventually be known as the iMac G4. The iMac G4 was extremely futuristic looking for it’s time with the entire motherboard and other components being housed inside a dome case. Coming out of the top of this dome was an adjustable metal arm and a TFT active matrix LCD screen with a native resolution of 1024 x 768. This was still a era of large heavy CRT monitors and seeing an LCD still felt pretty futuristic. In today’s article we will be looking at the 800MHz model which is the second of the four revisions Apple made of the iMac G4.

Even if your not an Apple fan you have to appreciate the industrial design and ability to fit everything into a small 10.6″ dome case. Even in 2019 as I write this article the iMac G4 wouldn’t look out of place on a sci-fi TV series taking place in the future home or on a starship.

Of course there is a price for this compactness and design and I’m not talking the dollar amount Apple wanted for one. I’m talking about expandability which is obviously severely lacking with the G4.

The front of the dome has no visible buttons or LEDs, just a shiny Apple logo and a slot for the optical drive. The optical drive in my model is a CD-R / DVD combo drive but the drive did vary by model.

Side shot

Full rear shot

On the back of the dome we have an array of different connections for connecting your G4 to the internet as well as other peripherals.

All the way, barely visible, on the left side we have a Kensington security lock for securing your iMac to some object so whomever doesn’t walk away with it. Next to this we have a standard 3.5mm headphone jack. The next jack looks to be another standard 3.5mm audio jack but it is not. This is actually a special audio jack for a set of Apple Pro speakers. The jack is a little smaller then a standard 3.5mm jack and it also delivers power to the speakers. I unfortunately do not have a pair of these speakers but many consider them some of the best speakers ever made for any Mac computer. Following this we have two firewire 400 ports and an Ethernet jack. In the center we have a three pin power connector followed by a modem, three USB 1.1 ports and finally a mini VGA output port. The port supposedly only mirrors the main display but still handy if your having issues with the built in monitor.

To access the internals of the iMac there are four small screws on the underside of the base.

Removing the metal base plate gives access to the airport wireless card, or if you don’t have one, the port to install it. To the right is a 144-pin SO-DIMM RAM slot. This RAM is the smaller style SDRAM more commonly found in things like laptops. This slot will accept up to a 512MB stick of PC133 memory which is what I have currently installed. The iMac G4 can accept up to 1GB or RAM total but the second RAM slot is not as easily accessible. Later versions used DDR memory and had a maximum limit of 2GB..

After removing several more screws on the base of the G4 you need to carefully pry the two pieces apart. Even with the screws removed it may take some effort as there should be thermal paste still bonding the two haves of the case together.

Here are the two halves separated. The upper half houses a fan and speaker as well as both the CD/DVD drive and hard drive above that. My 800MHz G4 came with the stock 5400RPM 60GB hard drive and OS X 10.4.11 installed. This hard drive can be upgraded to a larger size and can even be replaced with an SSD (via an adapter) if so desired.

Now lets take a look at the interesting part, the motherboard attached to the base of the g4.

1) CPU – My model features an 800MHz Power PC G4 but earlier models featured a 700MHz CPU. Later models went all the way up to 1.25GHz. There is no fan on the CPU but the heat sink is interesting on these models as it attaches to the side and makes contact with the upper half via thermal paste to use the entire case as a heat sink. This heat sink is more significant on the faster models. A metal clip holds the sink firm against the CPU but can easily be removed with the help of something like a flat head screwdriver and a bit of force though be careful not to gouge the motherboard or slip.

I do tend to like the Power PC chips and the 800MHz is sufficiently powered for the time though of course you’ll get more gaming mileage from a 1 or 1.25GHz model.

2) RAM – The second RAM slot is located on the upper half of the motherboard and uses a standard 168 pin DIMM slot. The slot on mine is also populated with a 512MB PC133 stick bringing my G4s memory up to the 1GB limit. I do understand Apple was working with space limitations and had to be creative to fit everything but it is an annoyance that one can only easily access half of the RAM sockets for upgrading without taking the computer apart. The difference in form factor could also potentially confuse less tech savoy consumers looking to upgrade their iMac G4s memory.

3) Video – I did not remove the small passive black heat sink to confirm but I’m almost 100 percent certain that lying underneath is the iMac’s Geforce 2 MX video chip. This model as well as the earlier iMac G4 also used this chip along with 32MB of non-upgradable video memory. Later models used the Geforce 4 MX chip as well as FX 5200 Ultra chips along with more memory. The Geforce 2 MX in the 800MHz here was not a high end or enthusiast oriented card but was a sort of cut down Geforce GTS with performance numbers a little higher in general then the older Geforce256. It did run cool and featured some advanced features for the time such as T&L (Transform and Lighting) capabilities making it a good choice for a non gaming oriented all in one machines like the iMac G4.

Next to the GPU chip we also have a small daughterboard like card. I believe this card has chips controlling the wireless and networking functions of the iMac.

4) Battery – This is the typical PRAM battery found ubiquitously in older Macintosh PCs. It’s always a good idea to change this battery when picking up an old Mac.

5) Various connectors

Above where the heat sink arm meets the upper case we have three connectors for interfacing with the upper half of the iMac. The smallest connector on the lower right is a power connector while the one above it is a standard ATA-66 IDE connector for interfacing with the CD/DVD and hard drive. The last connector strongly resembles a floppy drive connector but it is not. I believe this is just the interface between the monitor and the motherboard video and connects with a female connector on the upper half of the case.

The iMac G4 is a very futuristic design that even in 2019 I feel would fit in on the set of Star Trek or some other sci-fi production. As an everyday PC in its time it probably made a half decent space saving and fashionable family computer for tasks such as surfing the web and doing things like homework. As a gaming computer for a retro gamer though I find it very limited. The CPU is adequate but the Geforce MX is more suited for older 90’s games rather then early 2000’s mac titles. The RAM is a bit annoying to upgrade requiring you to open the case and upgrading in general is very limited. Unless your very short on space, only looking to play older 90’s Macintosh games or just love the stylish futuristic look of the iMac G4 your much better off with any of the Macintosh G4 towers such as the Digital Audio G4 or the Mirror Drive Door G4 towers, at least as far as expandability and gaming go. If you must have that iMac G4 look though there are always the more capable 1 and 1.25GHz models that should offer more in the way of early 2000’sOS X gaming capabilities.

Way back in Jan of 2016 I wrote an article on the slot loading iMac G3. This time we’re going to take a look at the original Bondi blue “tray loading” iMac G3 and see how this iconic computer that is often times referred to as “the Mac that saved Apple” compares to its later “slot loading” revision. In this article we will be looking at a more or less bone stock very first revision or revision A model originally released in August of 1998.

As I stated in my original post on the slot loading variant of the iMac I was not the greatest fan of the Mac and was firmly in the Wintel PC camp during that time. My disdain for the iMac though was at the height of my displeasure with all things Apple and I honestly did not know why anyone would want one of those computers. Time and experience though has softened my stance and I now can appreciate these computers for what they are and the use they were intended for. The all in one iMac G3 was not a new idea but it was an idea that Apple as a company had moved away from during the latter half of the ’90s to make more generic “PC” type machines and hence lost a lot of what made Apple unique and stand out in the market. The iMac G3 was an all-in-one machine and was extremely simple to set up and played with Apple’s strength of focusing on industrial design with a colorful and inviting Bondi blue colored shell as opposed to the standardized beige of almost all other PC cases. The iMac was intended to be extremely user-friendly and be simple to set up like a microwave or a toaster. This computer was aimed at the average user just wanting to “surf the net” or write school assignments rather than power users or gamers (even though the iMac certainly could be gamed on).

The original model seen here only came in Bondi blue as opposed to later models that were offered in a variety of colored shells. A handle was provided at the top to help move the Mac around but to be honest it always feels a little awkward to use and I always feel like it’s going to snap off despite the handle being very sturdy.

The bulk of the iMac is taken up by the built-in 15-inch shadow mask CRT monitor capable of resolutions up to 1024 x 768. The iMac G3’s kept this same spec monitor throughout all models though later slot loading iMac’s supplied an external VGA port to connect to an external monitor. These early tray loaders did not which makes it quite unfortunate if your monitor dies. The rear of the Mac hides only a small handle, which is used when removing the motherboard, and a standard 3-prong power connector.

They also came with a matching Bondi blue iMac keyboard and mouse. The keyboard is a simple Apple USB keyboard and is not so dissimilar from others besides the color but the mouse, a USB ball type mouse, is the infamous “puck mouse” so called because of its hockey puck like shape.

Unfortunately the rumors of the poor ergonomics of the of the puck mouse are completely true and the mouse can be very awkward and uncomfortable to use over any extended period of time. This isn’t a major problem since the mouse can be swapped out with any Apple USB mouse including later Apple Pro mice which use a standard shape and sports a laser as opposed to the older ball for tracking. The puck mouse also uses the traditional one-button Apple style mouse so no scroll wheel. The mouse has held up well though I’m not sure if this is from rugged construction or lack of use.

The iMac was famously the first Mac to drop the floppy drive although one was easily added via a USB port. In its place a 24x CD-ROM drive was standard and is located below the monitor. The early runs of the iMac used a tray loading CD drive, hence the “tray loader” title where as the later models used a self-loading slot mechanism. Next to the CD drive we have a power button that emits a soft green light when on and on the right and left sides we have two built-in stereo speakers. These speakers do have a habit of rotting a bit but it is a repairable issue and fortunately this particular iMac does not suffer from the foam around the speakers deteriorating.

The speaker on the left has a wireless 4Mbits/s IrDA inferred sensor which was removed starting with the revision C tray loaders. The right speaker has dual 1/8 stereo jacks for hooking up headphones that two users can use at once which is quite nice. Underneath the Mac is a fold-out stand of the same Bondi blue as the case.

On the left side of the iMac we have a small compartment housing some various ports. The is a plastic cover which can either be removed entirely or replaced after your various peripherals are plugged in and the wires snaked out through the several openings provided.

Once the plastic cover is removed we are greeted by a variety of ports.

On the left we have two more audio jacks, one for a microphone and a second for optional external speakers, handy if the built-in speakers fail or are not powerful enough for your liking. Next to that is a scant two USB 1.1 ports. The iMac is also known for going all in on USB and ditching the traditional Apple ADB ports in favor of USB though I wish more USB ports were made available. The mouse is generally expected to plug into the USB port on the keyboard (this why the cord is generally so short) and this does help free things up. A USB hub can also be used without issue in case you have multiple USB devices you want to use. Next we have a 10/100 Ethernet jack and lastly a 56k Modem jack.

Under these ports we have a mysterious little covered cutout held in by two screws. Behind this cover is what is commonly called a “mezzanine slot”. This is a sort of expansion slot that originally was only supposed to be for Apple’s internal use but you can use it for other things and third parties did make expansion devices that took advantage of the presence of this slot though from my research they seem to be extremely rare. I even know of at least one third party adaptor that uses the slot to add a 3DFX Voodoo II upgrade and according to Wikipedia SCSI and TV tuner cards were also available though I’ve never seen any of these cards in person. This port was removed along with the previously mentioned inferred sensor with the tray loading revision C model.

Opening the iMac is much easier then it is on later revisions and there is no “mesh” layer present that requires removal. You just need to remove a few screws on the underside and then use the handle to pull off the plastic case section. Once the outer case is removed as well as a few more screws and cables the motherboard assembly will slide out though be careful as with most older Macintosh computers the plastic casing can be delicate and things tend to snap off.

Here is the underside of the case with the motherboard assembly removed. The early tray loaders sport a fan for cooling as seen here while the later slot loaders used a fanless convection process to cool internals.

Here we have the tray that holds the motherboard and most of the iMac’s components completely removed from the case. The hard drive is located under the CD-ROM drive as seen in the image below. Mine came with the original 4GB 5400 RPM drive.

imactlx1

Originally the iMac came preloaded with Mac OS 8.1 or 8.5 with the ability to officially upgrade to OS X 10.3.9 though mine has been upgraded to OS 9.2.2.

1 ) CPU/RAM – The CPU and RAM on the tray loaders were both located on daughterboards that connected directly to the main motherboard. The metal cage enclosing the daughterboard easily wiggles off with some light force. Revision A as seen in this article and revision B iMacs only shipped with a 233MHz PowerPC 750 G3 processor w/ 512kb of L2 cache but later revision C and D tray loader iMacs had 266MHz and 333MHz CPUs installed.

tlmac12

imactlx3

imactlx4

CPU module top

imactlx5

CPU module bottom

Standard RAM amount was 32MB of PC100 SDRAM in a smaller laptop style form factor. The revision A iMac was expandable officially to 128MB and unofficially to 384MB. Revision B, C and D were officially expandable to 256MB and unofficially to 512MB. My machine came with the oddly numbered 288MB of RAM installed. It seems the previous owner did make the sole upgrade of adding a 256MB stick of memory in addition to the 32MB of RAM already installed.

I had no problem up upgrading my RAM to a full 512MB by installing two 256MB RAM modules despite being a Rev. A motherboard and sources online indicating 384MB being the limit.

2) Video – Original revision A iMacs shipped with a built-in Rage IIc chip and 2MB of SGRAM as seen on my iMac but this was quickly changed in revision B and up tray loaders to the much more powerful Rage Pro chipset with 6MB of SGRAM standard. The original revision A boards can be upgraded to a full 6MB of SGRAM.

The ATI chip isn’t a surprise as Apple has a history of using ATI chips for graphics in this era. As far as I can tell the revision A iMac G3 is the sole computer to use this specific version of the Rage chip built in. Overall the Rage IIc is an adequate chip, though by 1998 it was getting quite outdated and was seen as a entry level 3D video chip. 2D applications should run just fine as well as less intensive 3D titles as long as resolutions and features are kept in check.

imactlx2

with 4MB extra video RAM module

3) Sound – Sound has always seemed like a bit of an afterthought in Apple machines and finding specifics has always been a bit of a chore as sound chips aren’t commonly noted on spec sheets. The iMac would appear to use Crystal CS4211-KM chip which supports simulated surround sound via the two built-in speakers.

4) Battery – Lastly we have the PRAM battery which acts just like the CMOS battery in a standard motherboard. Be sure to replace this on any newly acquired Macintosh computer.

The iMac does what it set out to achieve and I can see now what I couldn’t see as my high school self, why the iMac succeeded. It wasn’t meant for people like me. It was meant less for hardcore PC gamers and those that liked to expand and tinker with their computers and more for the everyday user, the soccer mom, the person that just wanted to do homework and surf the internet and it made a pretty easy to setup and usable computer to sit in the corner of the family room and have for general family usage.

As a collectors piece the Bondi blue iMac is certainly worth adding to the collection and holds a significant place in computer history and especially Apple’s history. They are still relatively inexpensive as of 2019 though an original revision A may take some work track down and identify. If your purely looking for a Macintosh for late 90’s gaming though there are much better options. Personally, I think your better off acquiring a Power Macintosh G3 tower or desktop simply for the vastly greater options you get in upgrading (such as PCI slots) and higher ease of repair. Failing finding one of these a later slot loading iMac or even a G4 could make a good choice as they seem to be easier to source and are more powerful out of the box.

 

This slideshow requires JavaScript.

 

lc3mp

In previous articles we covered both the nearly identical LC and the LC II, both of which were early attempts to bring an affordable color Macintosh to the market. Both machines more or less accomplish what they set out to do but also both were heavily compromised in functionality to achieve this end.  The main compromises of the original LC and following LC II were

1 – A 32-bit CPU on a 16-bit motherboard severely hampering the performance of the LCs 16mhz 68020 CPU.

2 – An imposed limit of 10MB of RAM regardless of the size of the RAM stick(s) installed.

3 – complete lack of a MMU or FPU socket on the motherboard.

4 – Difficulty getting the LC to run with monitors outside of the fixed resolution 512×386 monitor it was intended to be paired with or period Apple or early VGA monitors.

The LC II added the ability to use virtual memory via the CPU’s built in MMU and tweaked the video a bit but was otherwise identical. Thankfully the LC III finally addressed all the above issues while maintaining the same small form case. Finally we have a full 32-bit data bus so as not to strangle the 32-bit CPU. There is now a MMU as there was built into the LC II but also much more expandability for RAM as well as a socket for a FPU chip and the video memory supports 640 x 480 resolution without any kind of fiddling or upgrade.

Other then the LC III badge the case is identical to the LC I and II. bear in mind there are two versions of the LC III case and one features a manual eject floppy drive that looks a little different with an indentation to grasp the disk. These cases also have the case badge as more of a label then etched onto the case. Otherwise these machines are identical.

The rear of the case though is identical to the LC I & II. from left to right you have the power connector and switch, Mac video port, modem and printer ports, external SCSI port, ADB port and finally an audio jack for speakers and mic. The Ethernet card installed on the right is the same one that used to be installed in my LC II.

The LC III like the LC I & II does not support power on via the keyboard and use of the rear switch is required. Opening the LC II is exactly the same as the other LC’s with just two fairly sturdy tabs securing the top.

Now with the top removed.

The general layout is basically the same as it was in the LC II with a single floppy drive and space for a SCSI hard drive. Mine came with a standard 80mb SCSI hard drive but I upgraded mine to a 500mb model by transferring the upgraded hard drive from my LC II.

Now lets take a look at the motherboard.

1) Enhanced LC PDS slot – The PDS slot on the LC has a slight extension to it compared to the PDS slot in the LC and LC II. The “enhanced LC PDS slot” in the LC III supports both 16-bit PDS cards of the type that would be used in the older LC machines but also 25mhz 32-bit PDS cards. Unfortunately these 32-bit cards are quite uncommon.

2) CPU – The LC III unlike the LC I & II now uses a full 32-bit data bus as opposed to a 16-bit but so the CPU can be taken full advantage of. The CPU in the LC III is a Motorola 68030 running at 25mhz, also a bump up from the 16mhz of the previous LC’s.   Some benchmarks of the time placed the LC III twice as fast as the LC II in overall performance. There is also a version of the LC III known as the LC III+ which is identical save for the CPU which got a speed bump up to 33mhz. There is no way to tell the two models apart as there was no indication given on the outer case. Only opening the case and checking the CPU or powering the machine up and checking in software would reveal the difference. There are guides available on modding the LC III into an LC III+ but perform at your own risk. Also Later LC III’s with the manual floppy drive eject are more likely to be the plus models though be aware this isn’t a sure thing.

3) FPU – Finally we have a socket to add an optional 68882 math coprocessor to assist in complicated math calculations. This doesn’t seem to of been a popular upgrade though as I’ve never come across an LC III with this upgrade though the chips are fairly cheap (as of 2018).  Like on the x86 PC though I don’t think the FPU was heavily utilized in any number of games on the Mac so the FPU upgrade was not seen as a priority.

Empty FPU socket to the right of the CPU

68882 coprocessor installed

4) RAM – The LC III has 4mb of RAM on the motherboard but also unlike the previous LC’s the LC III has a single 72 pin SIMM socket with the ability to add up to 32 additional MB or RAM for a potential max of 36mb. This is the configuration of my LC III featured here. The LC III was also the first Macintosh to use 72 pin SIMMs. This was a welcome feature as the previous 10mb was serviceable for the time but the ability to add up to 36MB total went a long way to extending the usefulness of the LC III in the future.

5) Video – The LC III features built in video and 512kb of VRAM standard. This allows 640 x 480 resolution on a 640 x 480 capable monitor out of the box and I had a much easier time hooking this LC up to my various monitors via a Mac to PC VGA adapter and getting a image without any hassle or “out of range” errors. The VRAM is upgradeable to 768kb via a VRAM slot and 256 KB 100ns VRAM SIMM. This will allow a maximum resolution of 832 x 624 at 16-bit

6) PRAM – this is the ever present PRAM battery for saving settings. It is always recommended to swap this battery out when you get a new Mac or if you start encountering strange instabilities.

The Mac LC III was a great evolution of the LC line finally fixing all of the shortcomings of the line while maintaining a lower price point. For all intents and purposes the LC III was a Macintosh IIci in a smaller form factor case with slightly lower performance and much less expansion capabilities. If all you wanted to do was some light work and gaming and didn’t need the expansion slots of the Macintosh II line the LC III was an excellent option that saved money and took up a little space in the house.

For the retro Mac gamer I would easily recommend this machine over the LC I and II. They don’t take up much space, are light and relatively cheap and easy to fine. They also offer enough power to run early color Macintosh games or black and white titles well and can work with most monitors hassle free.

Previously we talked about Apples attempt to create a low cost color Macintosh for the home and educational market. That machine was known as the Macintosh LC. In this article we’re going to look at Apple’s 1992 second attempt at a low cost color Mac, the aptly named Macintosh LC II. Unfortunately as we will see the LC II solved virtually none of the issues that plagued the original LC to the point that it almost makes you wonder why Apple even bothered to release the LC II.

First lets take a look at the front of the machine and the case.

The LC II uses the exact same slim form factor “Pizza Box” style case as the LC. It looks identical on the front except for two differences. Fist off is obviously the printed model name on the front be LC II as opposed to LC. The second change is the lack of a cut out slot for adding a second floppy drive. The dual floppy version of the original LC was so uncommon that Apple decided to do away with the option all together for the LC II.

The rear of the case though is identical to the LC. from left to right you have the power connector and switch, Mac video port, modem and printer ports, external SCSI port, ADB port and finally an audio jack for speakers and mic. This machine had a Ethernet card installed when I bought it which you can see all the way on the right in the expansion slot.

The LC II like the LC does not support power on via the keyboard and use of the rear switch is required. Opening the LC II is exactly the same as the LC with just two fairly sturdy tabs securing the top.

Lets take a look with the top removed.

Internally the LC II looks very similar to the LC as far as where things are placed both on and off the motherboard. The right side of the board is obscured in this image by the Ethernet card I have installed. On the upper left we have the 1.44MB floppy drive and to the left we have a SCSI hard drive installed, usually 30 – 80mb in size though this one has been upgraded to a 100+mb hard drive by the previous owner. In between them we have a speaker and fan for cooling.

My LC II suffers from leaking capacitors like almost all Macs from the 80’s and early 90’s yet still functions.

1) CPU – Possibly the biggest difference in the LC II is the upgraded CPU from a 68020 @ 16mhz to a 68030 running @ 16mhz. Unfortunately the 32-bit CPU is still running on a 16-bit data bus so we see virtually no increase in performance. Interestingly enough some sources claim the LC II actually runs slower then the original LC in some instances. The one big advantage though of the new 68030 is that this CPU had built in memory management capabilities finally allowing the use of virtual memory on the LC II.

2) LC PDS Slot – expandability was the same as the on the LC allowing for expansion only via one LC PDS (Processor Direct Slot) though on my motherboard the slot is a snazzy white as opposed to black on the LC.

The previous owner whom I believe was a teacher had a Ethernet card installed presumably this was an educational model connected to a network

3) RAM – Just like the LC the LC II had a limit of 10mb of RAM. Also like the LC the RAM was expanded by two 30 pin slots. The difference in the LC II was that opposed to having 2mb soldered onto the motherboard the LC II had 4mb on board. This was good news to first time users That didn’t have the money to upgrade RAM or did not have any sticks laying around but for users that already had 4mb sticks on hand it was a bit of a waste. This is because as I mentioned the LC II had the same 10mb memory limit as the LC but on the LC if you added two 4mb sticks you would get 10mb with the 2mb on board. With the LC II doing this same upgrade you still ended up with 10mb or memory but 2mb were completely wasted (4mb on board + 4 = 4 =12mb but with a 10mb limit). It was still worth the upgrade to have the 10mb max but it just feels a bit wasteful.

4) Video – Built in video on the LC II is almost exactly the same as the LC with 256kb of VRAM upgradable to 512kb via a VRAM socket next to the two 30 pin RAM sockets. The stock configuration of the LC II supported 512×384 pixels at 8-bit color while upgrading to 512kb gave the ability to display that same resolution at 16-bit color or 640×480 at 8-bit just like the LC. The LC II was also still meant to run at a 512×386 resolution with the 12″ Apple RGB monitor. This still gave problems with many Macintosh games and programs expecting a standard 640×480 res. The video on the LC II was supposedly tweaked though to allow it to work with a wider range of external monitors but in my testing I couldn’t find any that failed to work with the LC but worked with the LC II.

Eventually I did find an adapter that did work. This adapter had DIP switches and I found setting it to “auto sync” and 640 x 480 @ 67hz (the lowest setting) produced a off center but usable image.

5) PRAM battery – for saving settings

6) Floppy connector – The LC II supports 1.44mb floppy drives that receive power via the floppy cable and also use auto eject mechanisms. The LC II lacks a second floppy connector due to the complete removal of a dual floppy option.

7) 50 pin SCSI connector for connecting a SCSI hard drive.

So looking at the overall specs and design of the LC II we quickly realize that the changes from the LC are very minimal indeed. so to understand this better lets take a quick second look at the shortcomings of the original LC.

1 – A 32-bit CPU on a 16-bit motherboard severely hampering the performance of the LCs 16mhz 68020 CPU.

2 – An imposed limit of 10MB of RAM regardless of the size of the RAM stick(s) installed.

3 – complete lack of a MMU or FPU or the ability to easily add one.

4 – Difficulty getting the LC to run with monitors outside of the fixed resolution 512×386 monitor it was intended to be paired with or period Apple or early SVGA monitors.

Of these four shortcomings the LC II really only addressed part of problem 3 which is incorporating a CPU with a built in MMU to allow for virtual memory. It is true the machine came stock with more RAM but the total limit was still an anemic 10mb and even with the tweaks to the video I still had a hard time finding  a monitor outside of the Apple 12″ RGB or a professional NEC multisync CRT that would display with the LC II. I tried several adapters as well as several monitors such as my Sony G240 and Mitsubishi Diamondtron CRT’s but all gave a “out of range” error. I finally found and adapter with switches that allowed me to set it to 800 x 600 resolution manually and that seemed to work okay. You may have much more luck with an earlier SVGA monitor. Also one has to take into consideration that as stated earlier in some instances the LC II may even be slightly slower then the original LC.

Overall the improvements to the LC II don’t really seem significant enough to justify its existence though I’m sure a number of people did appreciate the inclusion of virtual memory and even the increased stock RAM. If your a retro gamer I would still suggest holding out for an LC III or Macintosh II though for the price these things go for its worth grabbing if your a collector.

LC II running with a screensaver. This monitor has severe vertical folding issues that are not to apparent in this image.

 

The Macintosh LC, if not Apples most crippled computer must be up in their top 5. The machine is purposefully held back in so many ways that performance is severely impacted yet it was still successful and is still an enduring member of the Macintosh family.

The LC in Apples 1990 Macintosh LC stands for “Low Cost” or “Low Cost Color” so one wouldn’t be shocked to to find that the machine is hindered performance wise. This was Apples stab at making a low cost color Macintosh for the family and the educational market.

The first thing one notices about the LC is its extremely thin and light case. This case became known as the “Pizza Box” case due to its similarity to the shape of a Pizza Box. The case is remarkably small and light and despite being all plastic it holds up as there are only two fairly sturdy plastic tabs on the rear that secure the top of the case down. The LC sports one or rarely two 1.44mb floppy drives. The two drive versions were not very popular but you can see on the left where another floppy drive could be placed. Usually as with this model that space was occupied by a 30 to 80GB 50 pin SCSI hard drive.

Looking at the rear of the LC was have a standard connector for a power cable as well as a switch. The LC does not support soft power on from the keyboard so powering on and off is done via the rear switch. Next to that we have a 15 pin video port for the built in video, an apple printer, modem port an external SCSI port a ADB port for keyboard and mouse and finally two audio jacks for speakers and mic.

Here is the inside with the top cover removed and we can see the motherboard is very small and compact. This machine when I got it had the hard drive removed but you can see where it would be mounted. between the two drive bays we have a speaker and a small fan. The LC also uses a proprietary small form factor power supply which if yours dies can be an issue to replace.

1) CPU – The Macintosh LC is controlled by a Motorola 68020 CPU running at 16mhz. The crippling factor here though is that we have a 32-bit CPU running on a motherboard with a 16-bit data bus thus severally hindering the performance of the CPU. One example of the bottleneck this created is the Macintosh II which used the same CPU yet ran on a 32-bit motherboard. This computer is almost twice as fast or up to 40% faster then the LC despite having the same clocked CPU. This performance gap is due mainly to the restrictive data bus of the LC. The LC also lacked a MMU (Memory Management Unit) for virtual memory or ability to add one thus limiting the memory.

2) RAM – RAM is another area that the LC is a bit limited. The LC comes with 2MB of RAM soldered onto the motherboard with the option to add another 8MB via two 30 pin SIMM slots for a total of 10MB of memory. This limit is placed by the memory chipset so even placing larger RAM sticks into the sockets still results in a limit of 10MB. This amount of memory, though usable, was fairly small even by the standards of 1990.

3) Video – The LC came with video built into the motherboard as well as 256kb of VRAM upgradable to 512kb via a VRAM socket next to the two 30 pin RAM sockets. At stock configuration the LC supported 512×384 pixels at 8-bit color while upgrading to 512kb gave the ability to display that same resolution at 16-bit color or 640×480 at 8-bit. The problem was the LC was mainly meant to display at the 512×386 resolution and even had a special 12″ RGB monitor which had its resolution fixed to 512×386. This monitor fits perfectly on top of the case of the LC, LC II and LC III. Many programs at the time expected 640×480 so when displayed on the 12″ RGB monitor at 512×386 a number of programs displayed incorrectly.

The LC is also notoriously picky about what monitors it will work with. neither my Sony G420, Gateway T17LC-8 CRT monitor nor my Samsung Syncmaster 171n LCD monitor would work with the LC when using a mac to PC adapter. This incompatibility continued when attempting to use a VGA to S-video converter as it produced a rolling and unstable image on my Sony KV-32FV310. usually the error was an “Out of Sync” error as the LC seems to output at a 25khz frequency many monitors just will not accept. I finally had to use a NEC PG-2740 professional monitor to get an image from this machine or the LCII I also have.

It is supposedly possible to modify the Apple 12″ RGB monitor to run at 640×480 but it likely takes some experience with soldering and working with CRT monitors and not for the novice.

4) LC PDS slot – Expandability on the LC was pretty meager and it only sported one specialized LC PDS (processor direct slot). This slot was mostly intended for the Apple IIe compatibility card which granted high compatibility with the huge Apple IIe backlog of games and programs but other cards such as accelerators and video cards were produced as well.

5) PRAM battery – for saving settings

6) Floppy connectors – The original LC had two floppy connectors for connecting one or two 1.44mb floppy drives. Note that these are special drives that receive power via the floppy cable and also use a auto eject mechanism. The dual floppy versions of the LC are pretty rare as this was not a popular option.

7) 50 pin SCSI connector for connecting a SCSI hard drive.

8) PSU connector

So lets go over and list the issues that crippled this machine.

1 – A 32-bit CPU on a 16-bit motherboard severely hampering the performance of the LCs 16mhz 68020 CPU.

2 – An imposed limit of 10MB of RAM regardless of the size of the RAM stick(s) installed.

3 – complete lack of a MMU or FPU or the ability to easily add one.

4 – Difficulty getting the LC to run with any monitor outside of the 12″ RGB  fixed resolution 512×386 monitor it was intended to be paired with or period Apple monitors.

Considering that Apple was trying to create a low cost machine at an affordable price one wouldn’t be to surprised at the cost cutting done to the LC and the limitations thus created. One plus I could give the LC is that it is extremely lite and the Mac itself is easy to transport and setup. The case is also pretty durable for being all plastic and the tabs seem to hold up fairly well. That said for the modern retro gamer looking for an early 90’s Macintosh I would stay away from the LC for anything other then pure collecting. They are fairly cheap even on eBay as well as easy to find but there are far better options such as the various models of the Macintosh II or the LC III (which we will get to). I should note that the LC in this article currently is none functional due to leaking capacitors which is a common issue on old PC’s and especially these 80’s and early 90’s Macs. Apple did in fact attempt to correct the issues that limited the LC though it wouldn’t be until the third iteration that they more or less got it right.

This slideshow requires JavaScript.

On this blog we have already taken a look at two models of the Apple G4 Macintosh line. In this article we are going to take a brief look at another of this line. The Macintosh G4 “Sawtooth” also referred to as the AGP G4 due to its addition of an AGP slot for video.

The Sawtooth as we will refer to it uses the same style case and color scheme as the Digital Audio G4 that I covered earlier as well as the entire early G4 line. Released in 1999 the Sawtooth was a modest improvement over the earlier “Yikes” G4 with an AGP slot for video as well as faster ATA controller for IDE devices and the option of some faster video cards as well as faster CPU speeds.

The front is identical to the earlier models with the center speaker and power button as well as the smaller reset and debug buttons on the lower section. There are two bays, one 5 1/4  and the lower bay being 3 1/2. Mine has a DVD drive installed as well as an optional ZIP drive.

Turning the Macintosh around we see the PSU connector as well as four expansion slots on the lower portion of the case.

On the upper half we have our various connectivity jacks and ports.Closest to the top we have two Firewire 400 ports with a 10/100 Ethernet jack below that and then below that we have two USB 1.1 ports and finally two audio jacks for speaker and / or microphone. We also have a jack for a modem to the right.

Like the other G4 Macs the case opens very easily by pulling on a handle on the side. Here I have all the expansion cards removed as to give a better view. Up top we see the power supply as well as the two drive bays. The bays are actually one single piece that slides out by removing the front panel and undoing two screws. The lower bay appears to be 5 1/4 at a glance but it’s really a 3 1/2 bay. Mine originally had a hard drive installed in it for some reason.

The G4 Macintosh actually has ample room for hard drives and mine came with six hard drives installed. Possibly the previous owner was running a RAID array. I took out most of them but left in two. One is a 400GB and the other is 250GB. I left the OS that was installed though which was OS X 10.2 though I believe the original OS shipped was 8.6.

Now lets take a better look at the motherboard.

Compared to a PC motherboards I always found Macintosh motherboards from this time to look rather sparse and boring though this may be attributed to having components on the underside of the board. This motherboard like the Yikes model before it and the Gigabit Ethernet model after run on a 100mhz front side bus.

1) CPU – All of the original model G4 Macs run on the Power PC G4 (7400) CPU.  The CPU in this machine is a 450mhz version with 1mb of L2 cache but they also came in speeds of 350mhz to 500mhz. The 450mhz would be the middle range option and is probably comparable to an earlier Pentium III in performance.

2) RAM – There are four slots present designed to handle up to 2GB of PC100 SDRAM. stock though the most the machine usually came with was 256mb. Also earlier OS’s which originally came loaded onto the Sawtooth can only detect up to 1.5gb

3) Internal Firewire. The Sawtooth G4 has an interesting internal connector not present on the earlier Yikes models nor the later Gigabit Ethernet version. This is a Firewire 400 jack on the lower right corner of the motherboard presumably to power an internal Firewire hard drive.

4) Wireless airport card connector for attaching a wireless card. This was a feature not present on the earlier model.

5) ATA connectors – Two ATA66 connectors for attaching up to four IDE devices such as CD drives and hard drives.

6) CMOS battery – Is the standard 3.6 V lithium battery to save settings. Like all Macs the death of these batteries tend to cause more issues then what I see happen in PC’s. If your having odd instabilities replace these things first.

7) ATX power connector

Finally lets take a look at the expansion slots and cards I have installed.

The Sawtooth comes with three 66mhz PCI slots which will accept your standard PCI cards as well as special cards meant for the faster 66mhz PCI slot. Also new to this model over the Yikes Macintosh is the x2 AGP slot for a dedicated video card.

Video – The video card I have installed is an AGP ATI Rage 128 Pro card. This would of been the stock video card to come with this G4 though some models also came with non Pro versions. These cards came with 16mb of video memory onboard. I think the Rage 128 Pro is a decent card for the time and these were found in virtually all Apple Macintosh machines at the time. They have decent performance compared to something like the TNT2 as well as good compatibility with older titles. The video out options on this particular card are also nice offering standard VGA as well as DVI and S-video. This card does seem to run out of steam fairly quickly when you start running games post 2001 or so. Id recommend it for late 90’s Mac games but if you looking to upgrade this card maybe should be close to top on the your list for replacement.

SCSI was also an option on these Macs and many long time Macintosh users were still quite accustomed to the SCSI hard and CD drives. My machine came with a PCI Adaptec SCSI controller which I suspect was installed stock. I was able to use this card to replace the hard drive in the ZIP drive bay with an actual purple face plate SCSI ZIP drive although stock these machines used IDE ZIP drives with a face plates matching the translucent blue plastic.

CPU UPGRADE

I did also happen to acquire a Sonnet Encore ST/G4 upgrade CPU that I wanted to test out on this machine. Mine is a whopping 1.7ghz upgrade but they also made a 1.8Ghz upgrade chip and possibly faster. Installation was fairly easy and saw a massive speed boost over the 450mhz G4

I did notice that OS 10.2 did identify the CPU as a G3 though this didn’t seem to really affect anything.

sawtoothug3

Another upgrade I tried out as adding a PCI ATA133 card to match with the installed Maxtor ATA133 hard drive. This created noticeable faster booting times.

All an all another solid G4 machine from Apple. The Sawtooth does a modest job of improving on the Yikes G4 (a machine I hope to one day cover) but doesn’t offer anything to dramatic. Again, this is machine would certainly make a nice 90’s Mac gaming rig with a CPU that falls into the area of being capable but not to fast. The case is also rather nice being built quite solidly compared to earlier “brittletosh” cases and is also super easy to access and work on. I’ve never had any issues with the G4 processor and its always a treat to work with. These machines can also be found very cheaply so don’t hesitate to pick one up.

 

FDISKformat

A place for the pc collector

I ❤ Old Games!

Probabilmente il miglior blog bilingue al mondo*

Waltorious Writes About Games

Game-related ramblings.

NekoJonez's Gaming Blog

My Gaming Timeline

Evelynn Star

Lynn talks about video games, records and books ...

Retro Megabit

Sharing My Retro Video Game Collection.

133MHz's Junk Box

Random electronics and gaming crap

SNES A Day

Chronogaming project featuring reviews, screenshots, and videos of the entire Super Nintendo library in release order.

Retrocosm's Vintage Computing, Tech & Scale RC Blog

Random mutterings on retro computing, old technology, some new, plus radio controlled scale modelling.

The PewPew Diaries.

Work(s) in Progress!

1001Up

1001 video games and beyond

retro computing and gaming plus a little more

sparcie

retro computers and stuff

jispylicious

Stay Jispy!

%d bloggers like this: