Skip navigation

Category Archives: classic computers

In my last article I wrote about the iconic IBM 5150. This time we are going to look at another machine of the eighties that is just as, if not more iconic, the Apple IIe. The Apple IIe or Apple II “Enhanced” is the third model of the Apple II line and was released early in 1983. It was the longest produced Apple II and with little doubt the most iconic of the line.

Like many computers of the early 80’s and unlike the IBM 5150, the Apple IIe used specialized chips and was only able to use its own software specifically for the Apple II line. The Apple II was a bit more expandable then some other micro computers such as the Commodore 64 and Tandy CoCo as it does have a number of expansion slots available which we will take a look at once we open the Apple II up.

Keep in mind there were a few revisions of the Apple IIe. Mine appears to be the 1985 “Enhanced IIe” which involved several changes and upgraded chips which we will also talk about a bit later.

All versions of the Apple IIe were the popular at the time “keyboard computers” as in the computer was compact and featured a built in keyboard similar to a Commodore 64 or Tandy CoCo. The image above also features two DISK II 51/4 floppy drives which the Apple IIe was commonly found with. These drives accept 140kb Apple formatted disks.

Lets take a quick look at the monitor I’m using before taking a look at the rear of the apple II and then opening it up.

I am using the 13 inch Apple ColorMonitor IIe which is a composite color monitor that was widely used with the Apple IIe line. Mine is not in the best shape with a chipped power button and a missing front bezel but it works and the image is a good quality, generally higher then a similar consumer TV of the same size and time. There are several adjustment knobs as well as a “white button” which turns the Color IIe into a monochrome monitor.

The connector is a RCA style composite connector located on the rear of the monitor.

Unlike many of the home micro computers of the early 1980’s the Apple IIe line allowed for relatively easy expansion via expansion cards much like an IBM compatible PC. The Apple IIe does have a few built in ports located in the lower left hand corner.

Starting on the left we have a single RCA style composite jack for connecting to a composite color or monochrome monitor like the Apple ColorMonitor IIe or any standard TV with a composite input should work although Wikipedia states the output is “unreliable” and may have varied results when connected to anything besides a monitor.

video modes according to Wikipedia for the Enhanced IIe are as follows

  • 40 and 80 columns text, white-on-black, with 24 lines
  • Low-Resolution: 40×48 (16 colors)
  • High-Resolution: 280×192 (6 colors)
  • Double-Low-Resolution: 80×48 (16 colors)
  • Double-High-Resolution: 560×192 (16 colors

Next to the composite out jack there are dual 1/8 input and output jacks for connecting a tape deck. Lastly is a db-9 joystick port. This port is for Apple compatible paddles and joysticks.

This port is physically compatible with Atari and Genesis joysticks and gamepads but is not electronically compatible and can cause damage if connected.

Above these built in ports taking up expansion port cutouts 1 and 2 are the cables connecting to the dual Disk II floppy drives. Unlike most cards which would have a port on the rear of the card and be exposed on the rear of the computer through the expansion slot the apple II disk II controller card has dual internal pin connectors for the floppy ribbon cables. This means the cables connect to the card and then must be snaked out of the rear of the Apple IIe and to the drives.

Below is a Apple IIe disk II controller card

Down farther from the floppy drive cables at expansion port 6 is my Hayes modem card. I’ve never actually used this card but It came with my Apple IIe

The Apple IIe is relatively easy to open up and the cover can be removed by unclipping the two plastic tabs at the rear and then lifting up.

As I stated earlier my Apple IIe is the Enhanced IIe meaning that 4 chips have been replaced or “upgraded” including the CPU and a three ROM chips in order to make the Apple IIe more compatible with the Apple IIc. These changes did fix a few bugs and increase compatibility with newer software but also introduced some slight incompatibility issues with a few older software titles.

1) CPU – The Enhanced IIe uses the 65C02 processor running at 1.023MHz on an 8-bit bus. This CPU is an enhanced version of the 6502 CPU found in earlier Apple IIe computers and offers bug fixes, lower power draw and some performance improvements.

My Apple has the 65SC02 CPU which is a variant lacking bit instructions.

2) RAM – The Enhanced IIe like the Apple IIe before it comes with 64kb RAM built into the motherboard. This was fairly easy to increase up to 1MB by use of RAM expansion cards.

One common card used for expanding RAM on the Apple IIe was the 80col/64k card. This card when installed in the auxiliary slot on the motherboard added 64k of additional RAM bringing the total system memory up to 128k and allowing 80 column mode to be used.

My Enhanced IIe came with a RAM Works card from Applied Engineering. This card when installed in the auxiliary slot operated exactly like the 80col/64k card except it could upgrade your system memory all the way up to a full 1MB of RAM.

As far as games go I’m not sure any games required or took advantage of more then 128k of memory although several utility/productivity programs either required or ran better with more RAM on the Apple IIe.

3) Expansion slots – The Apple IIe used seven 50-pin Apple IIe Bus slots for expansion. This worked very much the same way as it does on any IBM compatible as you can buy various compatible expansion cards and simply install them in the slots. These cards ranged from the disk drive controller to modems, sound cards and even hard drive controller cards.

4) Auxiliary slot – The Auxiliary card slot is a 60-pin slot designed specifically for certain Apple IIe compatible cards. Primarily these were memory expansion cards but RGB video adaptor cards also used this slot.

5) Various connectors can be found on the right side of the IIe motherboard. The connector labeled “keyboard” is obviously for the built in keyboard cable. The “numeric key pad” connector is for adding an external numeric keypad which you would need to snake the connector cable out one of the various openings on the rear of the computer. Finally the game I/O is simply another internal game joystick/paddle port.

Sound – Sound for the Apple IIe was provided by a simple cone speaker. There were sound cards produced for the Apple IIe line such as the Mockingbird card but very few games seemed to take advantage of these cards.

Upgrades

Besides expanding the memory for my Enhanced IIe to 1MB there was also a few other simple upgrades I was able to try out.

The first was upgrading the dual Disk II drives to something that looked a little better. The dual drives worked fine but I feel like they looked a little crude and having both drives essentially hard wired to the case unless I removed the lid and disconnected them internally from the card made moving the Apple IIe a bit of a chore.

Thankfully in 1983 Apple released the DuoDisk which took two disk II drives and placed them inside a single case which connected to a controller card via a single detachable cable.

The second upgrade I tried was an accelerator card. The card I tried was the Titan Accelerator IIe. The Titan accelerator features the same 65c02 microprocessor as the IIe but this one runs at a blazing 3.58MHz and adds 64k of memory.

My card has a R65C02P4 processor installed which is supposedly running at 4MHz. Unfortunately I didn’t have much working Apple IIe software to do testing at the time but the game Planetfall which I did test did not seem to be running any faster then before and would lock up when landing on the planet while the Titan accelerator was installed.

Since all Apple IIe computers used the same CPU at the same speed rating games by nature were fined tune to operate at 1.023MHz and thus I find using any accelerator in an original IIe to be dubious at best. The added speed may be of benefit with some productivity software but since most of us retro computer enthusiasts primarily enjoy gaming on original hardware I feel like an accelerator may do more harm then good in an Apple IIe by throwing off the timing of games or even flat out locking up or refusing to run software.

The Apple IIe is an iconic computer that any hardware collector needs to have in their collection. The enhanced IIe is a pretty good choice when looking for an Apple II and should play most games and software just fine though keep in mind some older games may not function correctly due to the updated ROMs and CPU.

Unfortunately in the time I had my Enhanced IIe setup I found it getting fairly little use. Although there is a huge number of games available on the Apple II I found myself primarily running their ports on other machines which offered either superior visuals and sound or better ease of use. Despite the huge amount of games for the Apple II there seems to be relatively few exclusive titles and the titles that are exclusive seem to go for large sums of money on sites like eBay.

There were personnel computers before the IBM 5150 but the 5150 is the computer that solidified what an IBM compatible PC would be. The 5150 featured an x86 processor, internal slots for various upgrade cards and was primarily intended to run off of PC-DOS / Microsoft MS-DOS operating system, all things we would learn to associate with the future IBM PC compatible market. The IBM 5150 was released in 1981 and was primarily intended as a machine for serious business tasks but was certainly capable of playing games and performing other non business functions.

The overall construction of the 5150 is extremely sturdy with a heavy metal case. The face of the case features no buttons or LEDs that we expect from later PCs and just features a stylish IBM PC badge, some vents and dual full height drive bays. The 5150 was sold in a few configurations including dual and single floppy drive variations as well as a version with no drives at all.

The dual full height bays commonly housed one or two 160k/360k (single/double sided) floppy disk drives. You can add two half height drives into these bays though this will require some means to secure the mounting as the bays are designed only to secure full height drives.

The power button is located on the left rear side of the 5150 case and uses a large on/off switch.

A locking mechanism was sold by IBM which one would place over the power switch which allowed the PC to only be turned on with the use of a key though I believe this also worked with XT and AT models as well.

Lets take a quick look at the rear of the case.

On the left side we have one female and one male power port. the male connector uses a standard three prong power cable with the female connector intended for a monitor to to plug into. To the right of the plugs we have a large round vent for the power supply followed by a keyboard and cassette connector. On my PC these ports are conveniently labeled.

The original keyboard for the IBM 5150 is the model F.

Model F keyboard

The model F is similar to the later model M in that it is very well built and does feature “clicky” keys. As you can see above the function keys are located to the left and there is no space between the num pad and the rest of the keys. This is a PC/XT class keyboard and will not work on later AT class machines.

The cassette port located next to the keyboard port was rarely used on the 5150 though I suppose if one had purchased a variation without any disk drives this would have been the expected method of data transfer. Finally we have five slots for adding expansion various cards.

Before opening this case up and looking inside lets take a quick look at the monitor.

The intended monitor for the 5150 was the IBM 5151 green monochrome monitor. Being mostly intended as a machine for office use where sharp text took priority over color, although IBM did release a color CGA and EGA monitor with very similar styling. The 5151 monitor gives a very nice and sharp monochrome image and is also surprisingly light compared to the general heft of the 5150. The two dials are for controlling brightness and contrast.

Unfortunately the two power cords on the 5151 are hard wired to the monitor itself. One cord is a 9-pin connector to connect to a monochrome video card with the other being the power connector intended for connecting to the female plug on the 5150’s power supply. There is no power button on the 5151 as the monitor was intended to power on with the 5150.

OK, now lets take a look at the inside of our 5150.

Take note that I have upgraded the power supply in these images to a 130w power supply in order to accommodate a possible hard drive. The stock power supply in the 5150 is a fairly anemic 63w supply and may not supply enough power if a hard drive is added.

There were two motherboard versions released for the 5150 depending on when it was manufactured. Earlier models used the 16kb-64kb boards which only were capable of supplying a maximum of 64kb of RAM on the board’s RAM sockets. My 5150 uses the later 64kb-256kb motherboard indicating a total of 256kb of RAM could be installed on board.

1 ) CPU – The CPU is the classic 8088 running at 4.77MHz. This was a cost saving measure as the 16-bit 8086 would have been faster but more expensive. Keep in mind that the NEC V20 which offered a slight speed boost over the 8088 was a fairly common upgrade on these machines.

1.5 ) math copro – Located alongside the CPU socket is the FPU socket for adding an 8087 math co-processor if desired.

2 ) RAM – My PC has been upgraded to the full 256kb of memory. Notice how the first row of memory is directly soldered to the motherboard while the following three rows are socketed.

3 ) PC Speaker – The 5150 uses a real PC speaker located on the far side of the case.

4) Switches – Two switch blocks located on the motherboard are used for setting things such as installed memory, type of video card installed ect… switch settings as well as a large amount of other information on the 5150 and other IBM PCs can be found here.

Lets take a look at the various expansion cards I have installed in my 5150.

Unlike later IBM PC compatibles which upped the standard expansion slot count to eight the 5150 only sports five 8-bit ISA slots. This can be a little limiting considering there is virtually nothing built in as far as video and I/O goes as well as the fact that your going to most likely be losing one ISA slot right from the start to a floppy drive controller card.

This is the standard IBM floppy controller. It features an external floppy port and when paired with the 5150 can support up to four floppy drives. Drives connect via the edge connector on the rear of the card. This card is currently running my dual 160k/360k drives but is also capable of supporting 720k 3 1/2 inch floppy drives.

Next up of my currently installed cards we have the monochrome video / printer card.

The IBM monochrome monitor card (MDA card) is designed to connect to the 5151 monochrome monitor and you will usually find this card installed in almost all 5150’s. The MDA card is not capable of displaying pixel graphics but only characters thus making it largely unsuitable for games but great for business which mainly benefited from having a sharp text display. There are games like Rogue which can be played on an MDA monitor since it only uses text and characters for graphics. Thankfully IBM understood the situation with limited expansion ports so the IBM MDA card also included a printer port.

An option even better then the IBM monochrome card would be a Hercules card or Hercules compatible card. These cards also worked with a monochrome monitor and featured a parallel port but also had the added benefit of being able to display graphics on a monochrome monitor for games which supported Hercules mode and with a small program even emulate CGA graphics in monochrome.

Thankfully you could also install a CGA card (as well as an EGA or VGA card) in the 5150.

There are a few revisions of this card from IBM with minor differences but I am using a later revision here. Although you can install a EGA and even some VGA cards in the 5150 I find the machine lacks enough power and RAM to properly run those sorts of games and is best suited for playing CGA titles. There are also a number of later more advanced CGA cards from companies like ATI which offer more display modes in a smaller form factor but I was trying to keep things more or less IBM and early 80s with this build.

Most commonly CGA offers games to be played with four colors from just a few palettes. Black, Cyan, magenta, white is the palette most associated with CGA though there are other palette options.

The IBM CGA card also offers a composite out for connecting to a standard TV. This produces a less sharp image then CGA on a computer monitor but techniques like dithering can be used to blend colors and create an image resembling EGA in some cases.

You also have the option, like I have done with my 5150, of installing dual video cards. I currently have both a MDA and CGA card installed. You can switch back and forth between MDA and CGA monitors with a DOS command MODE CO40 for CGA 40 column mode, MODE CO80 for CGA 80 column mode and MODE MONO for the monochrome display in 80 column mode.

The final card I have installed is an AST MegaPlus II card.

multi function cards like the MegaPlus II and the AST SixPack Plus were fairly common for the IBM 5150. The lack of expansion slots gave an opportunity for third parties to step in and create expansion cards which incorporated several useful features into one card. The MegaPlus II adds a real time clock, up to 512kb of memory to bring your 5150 up to 640kb, a serial port as well as multiple headers for daughterboard expansions.

Adding a hard drive / 720kb floppy drive

I kept my 5150 fairly stock and period correct but for some extra quality of life adding a hard drive and 720kb floppy drive is fairly simple.

The first issue you’re going to have with adding two half height drives is that the bays were only designed to securely mount a single full height drive as we can see in the image below.

Any upper drive would have no points to mount to. Thankfully there are some solutions as mounting plates were made to allow the use of dual half height drives. Theoretically I suppose if you had some sheet metal and tools you could create your own mounting plates. Below is a mounting plate I used, unfortunately it has no labeling so I’m not sure if it was homemade or part of some official kit.

If you do not have a mounting plate I found improvising works just as well though may it may not look as eloquent of a solution. I was able to position a mounting rail from a random PC diagonally and use it as a fairly sturdy mounting solution.

Once the mounting situation has been taken care of its time to well….mount the drives. Mounting the 3 1/2 720kb is fairly simple as even the stock IBM floppy controller will support it. You just either need a cable with the correct connectors or install a pin to edge connector adapter on your 720kb drive and it should run just fine. Newer 1.44mb drives will also work as 720kb drives without issue.

Installing a hard drive is a little trickier as the stock power supply is under powered for the task and the 5150 was not initially designed with a hard drive in mind as IBM never offered a hard drive as an option although later it did offer a 5161 expansion unit which did house a hard drive but which was the size of the entire 5150. Your first task is to upgrade the power supply with a beefier one. I upgraded mine to a 130w supply.

If you want to be more period correct you will want a MFM or RLL hard drive controller. I used a WD controller as well as an ST-225 20MB drive which worked without issue for me.

If your not trying to be period correct your best bet would probably be an XT-IDE controller with a CF card as these draw much less power then period drives and offer much faster speeds and reliability.

A friend once asked me why I would want a 5150 and proceeded to ask me if I “wanted to emulate being a 1980s office worker”. This comment is actually pretty fair since the 5150 is first and foremost a business machine. You certainly can play games on it and with a little work upgrade it well for this purpose but in truth there are many better options if you’re looking for an early 80’s 4.77MHz niche machine. The weak power supply and limit of five expansion slots does not do the 5150 any favors. If you want an early 80’s 8088 based machine find or build a nice machine with eight slots a turbo button and 640kb of memory built in.

On the other hand as a collector of vintage PC hardware the 5150 is a no brainer, it needs to be in your collection. The 5150 is iconic and set the stage for all IBM PC compatibles for decades to come.

Around four years ago I wrote an article on this blog about the very similar IBM 300PL Type 6562. I picked up this machine because I really liked the style of the case but it really wasn’t the model I was looking for. Finally, several years later I finally acquired my IBM 300PL 6862.

The case is more or less identical in style and size to the 6562 except it lacks the audio input/outputs and volume control under the floppy drive. On the left side of the case we have a large power button with three LED indicator lights underneath for power, HDD activity and network activity. Near the center of the case is a slot meant for a 1.44MB floppy drive. To the right side of the case we have 2 5 1/4 drive bays with one being occupied with a CD-ROM drive, though in this case it is not the original drive.

Turning the case around we can tell right away by the orientation of the four expansion slots that this machine uses a riser card. Starting under the expansion slots mid-case and moving right we have our various built in I/0 ports. First we have three audio jacks for the built in audio for a microphone, line in and finally line out. Next we have an Ethernet jack followed by a parallel port, dual USB 1.1 connectors, dual serial ports, two PS2 ports for mouse and keyboard and lastly a VGA connector for the built in video. Above the VGA port is another unusual cutaway. This is for the possible addition of an AGP card which we will take a look at once we are inside the case.

The case lid is pretty easy to remove and just requires lifting two tabs at the back of the case and pushing it forward and up. The IDE hard drive is mounted out of sight below the CD-ROM drive and below the second 5 1/4 bay.

Here is the handy data sticker found on the underside of the case cover though note that I found it wasn’t 100% accurate which we will talk about. This may be due to me updating the BIOS to the latest version.

And next lets take a better look at the motherboard.

The motherboard is an NLX form factor board which some manufactures like IBM and Intel pushed in the late 90’s. It was meant to be a low profile, low cost motherboard form factor and had some odd quirks like the AGP port placement on this board which is located far from the other PCI and ISA slots and, for the most part, requires NLX form factor video cards. It’s a little hard to see in the images above but the motherboard connects to another brown colored edge connector located where the riser slot is located.

1 ) CPU – The Type 6862 motherboard uses a slot 1 socket and supports both Pentium II and III slot 1 CPU’s. My particular machine came with a 450MHz Pentium III, the lowest clocked Pentium III, and also had what I’m pretty sure a cooling fan added on by the previous owner.

The sticker on the underside of the case lid gives switch positions for installing a Pentium III up to 550MHz but with an update to the latest BIOS I was able to successfully upgrade the CPU to an 800MHz Pentium III and using a Power Leap adapter was even able to install a 1.3GHz Tualatin. A few things to note however is I found the switch settings useless when upgrading the CPU and when I changed them from what was the systems default I even ran into POST errors. I suspect this may be an issue caused by the BIOS update which changes how CPU speed is handled. I did however run into a separate POST error after changing CPU’s that I had to go into the BIOS advanced features menu and disable “CPU BIOS update”.

Also note that there are no power connectors on the main motherboard for the CPU fan but there is one on the riser board which can be used.

2 ) RAM – The Type 6862 officially takes up to 384MB of PC100 SDRAM. My machine was able to recognize 512MB with the BIOS update under Windows 98se. I am currently using two 256MB sticks of PC133 which work at PC100 speeds on this motherboard.

3 ) Video – The built in video chip is a S3 Trio 3D with 2MB of SGRAM. The Trio 3D is more or less the successor to the Virge line of 3D acceleration chips and like them it has great 2D compatibility with older DOS titles but 3D is somewhat lacking. For retro gaming I strongly suggest upgrading with an AGP card unless your strictly going to be playing 2D titles.

4 ) Sound – Sound is provided by a Crystal CS4235-KQ chip. I don’t have much experience with this chip but the datasheet indicates it is Sound Blaster, Soundblaster Pro and Windows sound system compatible though being a budget chip I wouldn’t be surprised if the FM synth was not up to par with a true Yamaha OPL chip. For general use in Windows it should suffice but if you want to use the 6862 for gaming I would advise disabling the built in sound and adding an ISA or PCI sound card depending on your needs.

5 ) As was mentioned earlier the Type 6862 uses a riser board like many Desktops. on this riser board we have various connectors such as the power connector for the CPU fan as well as three PCI and two 16-bit ISA slots. This should be more than enough for adding sound and video cards depending on your needs.

If you look below the riser you can also see the long brown slot the motherboard itself connects to.

When installing expansion cards each card does not get its own screw to hold it in place but the case used a metal bracket that unscrews and then screws back on to secure any added cards.

6 ) AGP slot – Unusually on this board the AGP slot is located far away from the riser card and the other PCI/ISA slots. On a technical level it does not make much if any difference though it can cause issues if you were hoping to run a certain setup such as using a Voodoo 1 or 2 or any card that requires some sort of cable connection to your primary video card.

The other issue this arrangement causes is that due to the special video backplate used you need an NLX compatible video card with its video connector high on the card. Usually, these cards also have a little square cut on on them on the lower half under the video connector.

NLX compatible card on the right along with bracket adapter. None compatible card on left.

Thankfully Diamond Multimedia made a large number of NLX compatible video cards and most late 90’s video chips can be found in this form factor such as the Voodoo3, TNT 1 and 2, Matrox G200, ATI Rage 128 and others. The most powerful card sold in the NLX form factor was the Geforce 256 SDR though they tend to sell for quite a large amount of cash these days.

ATI Rage 128 in NLX form factor and proper bracket adapter attached.

I quite like the IBM 300PL Type 6862 and it’s quite versatile. You can easily install a low clocked Pentium II along with an ISA sound card and have a fast DOS rig. On the other hand, it also makes a great Windows 9x retro PC depending on your era of choice determined by your CPU and video/sound card choice. The ability to support everything from a Pentium II 233MHz all the way up to a 1.3GHz Tualatin via a power leap adapter makes this a very versatile retro PC.

The case is a bit large however and does take up quite a lot of desktop space. Other annoyances such as the odd arrangement of the AGP slot slightly limit your video card options but despite this the 6862 makes a great late 90’s retro PC.

Today we will be taking a look at a pretty solid 286 PC from the late 1980s. The VTI Turbo 55 although not noticeable at first is actually a Samsung branded PC which becomes obvious if we take a look at the sticker on the back or at the motherboard itself. First though let’s take a look at the front of the case.

On the front we have a keyhole for locking the computer along with two LEDs for power and HDD activity. Below this is what looks like a third LED at first but its actually a slightly recessed reset button. It’s a double-edged sword though as the recessed button does make it almost impossible to accidentally reset the PC it also makes it a potential pain if you do want to use the button to reset as you’ll need a pen or otherwise small object to use to press the button. There is no power button on the Turbo 55 so turning the power on and off is performed via a switch on the power supply.

To the right of these LEDs and reset we have two 5 1/4 drive bays. Mine are occupied with a 1.2MB 5 1/2 floppy drive as well as a 1.44MB 3 1/2 floppy drive. As I have the original box with the original specs printed on it seems this PC came stock with only the 1.2MB 5 1/4 drive. The 1.44MB drive was a later addition from the previous owner. Two bays do not leave much room for expansion but for a 286 class PC you’re perfectly fine with a pair of floppy drives. If you really wanted to you could always track down a dual floppy drive and use the second bay for a CD-ROM drive or something along those lines.

The Turbo 55 is one of those PC’s that have the keyboard connector in the front which I’m not the biggest fan of though this is a largely personal preference

The keyboard itself is pretty well made and feels like a model M with nice clicky keys. There is also an XT-AT switch on the underside in case you wanted to use it with an even older PC in your collection.

flipping the case around let’s take a look at the back.

You may notice the power supply looks well…incorrect. You would be right to think that and we will address that in a moment but first we will take a look at the built-in I/O ports. From left to right we have dual serial ports followed by a parallel port. Not a lot but as far as 286 PCs go it’s really nice to have anything built-in. Next to the parallel port we also have a curious switch with M below and C marked above. According to the documentation I could find on this model this is a monitor select switch with the M standing for mono and the C for color. The switch made no change as far as I could tell but I was using a later VGA card when I tested it so maybe it only works with CGA cards. To the right of this we have eight expansion slots with one being currently occupied by the EGA card.

Before opening the case and taking a look at the inside we can quickly talk about the power supply. The original power supply was a Han One HN-200c which when I received this computer was unfortunately completely dead.

In my foolishness though I ended up throwing it away since I just assumed it was a run of the mill AT power supply. In actuality the dimensions are a bit non-standard. The power supply I have installed currently is a newer ATX supply with an AT adaptor. It doesn’t fit quite fill the entire space so I just used some foam to fill the gap. Due to the lack of a power button I had to make sure the replacement PSU had a physical on/off switch.

The power connector on the motherboard itself is AT and any AT power supply (or adaptor) will connect to it just fine though the original HN-200C power supply did not have a split AT connector like most standard ones do.

With that out of the way lets take a look inside this PC.

Before we take a look at the motherboard lets take a look at the two expansion cards that were installed when I originally acquired this PC. If you look at the image above you’ll notice the hard drive is mounted in a vertical orientation to the right of the floppy drives.

The hard drive is run off the 8-bit controller card above and is the uncommon XT-IDE or XTA interface. This is a seldom used interface only supported by a hand full of hard drives. The Commodore Colt I reviewed some time ago also used this interface for its hard drive. The hard drive attached is a Microscribe XTA hard drive of 40MB size. I do believe this controller card and hard drive are original to this PC. Unfortunately after several hours I could not get the VTI Turbo 55 to work with any 16-bit IDE controller or SCSI hard drive controller despite the PC having 16-bit ISA slots. Fortunately for me though the stock XTA controller and the hard drive still are functional.

The only other expansion card installed was the video card.

The video card was an ATI EGA Wonder 800. I couldn’t find much information on this card but ATI was known to make some of the better cards of the time. The EGA 800 is also known to support extended EGA text and graphics modes as well as 16 color VGA modes. For convenience and due to my lack of a proper EGA monitor I replaced the card in my Turbo 55 with a slightly later 16-bit ATI VGA card.

Now let’s take a look at the motherboard itself.

The motherboard seems to be a Samsung AT 286-12 AKA SD 550 with eight ISA slots, two 8-bit and six 16-bit.

1 ) CPU – The CPU is an AMD branded 286-12 running at 12MHz. Interestingly this 286 is the N80L286-12 which is the lower powered variant running at 2.89W as opposed to 3.15 or 3.3W. the 286-12 was along with the 286-16 the quintessential and most common 286 CPU’s. Although fast enough to trigger issues with the more sensitive games meant for a slower 8088 when paired with decent VGA video card the 286-12 should have enough muscle to adequately run some slower paced VGA titles, specify point and click adventure titles.

2 ) FPU – As in most cases, my Turbo 55 came with an empty FPU socket and is a completely optional addition. For my Turbo 55 I chose to add a 287XL FPU. Unlike adding a standard 287-12 which would run at half the speed of the installed 286 (6MHz) the 287XL is actually a modified 387 FPU and should run at the full speed of the CPU which in this case is 12MHz. As I always feel obligated to mention the 287 regardless of its running speed will probably find very little use in this PC as very few games of the era took any advantage of a math co-processor chip. I did however find a CAD program installed on the hard drive which would be an application of the era that would have benefited from this upgrade.

3 ) RAM – My Turbo 55 came with a full 1MB of memory on the motherboard though from what I can see on the box 640KB and 512KB options were available. 1MB would be more then enough for a 286 class PC such as the Turbo 55 and more RAM could always be added via ISA memory cards such as the Intel Above Board if so desired.

Half of the RAM chips on the motherboard are directly soldered on while the other half are socketed.

4) Floppy connector – The floppy controller is built-in and supports up to 1.2MB and 1.44 high density floppy drives.

5) Power connector – standard AT power connector.

The serial and parallel ports can be disabled via the jumpers 11 through 14 located above the RAM while wait states can be set from 1 to 0 via jumper 21 located under the 5 1/4 bays. When I set my wait states to 0 I noticed a significant speed increase but unfortunately this created many stability issues making the machine virtually unusable.

The VTI Turbo 55 is a capable 286. It can be argued that the 286 is a fairly useless CPU for modern retro PC enthusiasts as they are to fast for earlier games while for later titles a 386 can run everything a 286 can but vastly better. I personally still find a certain charm in running a 286 system and the Turbo 55 does in my opinion make a fine 286. The 12MHz speed gives you some wiggle room for playing games and with the right video card even lets you play some slower paced VGA titles just fine. 1MB of RAM is just about perfect for the time and considering the CPU you’ll likely not feel the need to play any games requiring more than the on board 1MB of memory. If you do there is always the option to add more memory via an expansion card.

Most of my negatives of the Turbo 55 are fairly minor such as the frontal keyboard connector or the unnecessarily, at least in my opinion, recessed reset button. The biggest issue I had with the Turbo 55 was the difficulty in adding a different type of hard drive controller. XTA is a very limiting hard drive interface considering it only works with a handful of now 25+ year old hard drives of limited capacity. I tried multiple 16-bit ISA IDE controllers and drives as well as multiple SCSI controllers and drives and found none to work. This does seem to be an issue common to some 286 class motherboards and unfortunately this seems to be one of them. I did not test a modern XT-IDE controller but hopefully maybe one of these would work as a hard drive replacement.

This slideshow requires JavaScript.

Previously we have looked at several black and white compact Macintosh computers including the Classic, Classic II and Macintosh SE. Today we are going to take a look at the pinnacle of the B/W compact Mac family, the Macintosh SE/30.

The Macintosh SE/30 was released in 1989 and was a compact mac to rule them all. It offered the power of its larger Macintosh II brothers in a small compact package as well as some future upgradability.

The front of the SE/30 is obviously dominated by its 9-inch 512×346 pixel black and white screen. The quality of this screen is excellent and games designed for the b/w mac look great on this machine. Other then the screen we have a small HDD activity LED hidden within the horizontal lines below the screen. The floppy drive is a 1.44MB drive which on the SE/30 for the first time came standard on a compact mac.

The only dial or button on the face of the SE/30 is a brightness dial for the monitor hidden away below the Apple badge and model name.

First off on the lower left side of the rear is the expansion card plate for certain expansion cards. This SE/30 previously seems to have had a Radius display card but unfortunately the card was removed by the previous owner but the bracket was left behind. To the right of this we have a standard 3-prong power connector and the power switch.

Taking a look at the various ports starting from the lower left we have dual ADB ports for keyboard and mouse. Next to this we have an external floppy drive connector for attaching well, an external floppy drive. Next is an external SCSI port for connecting external SCSI devices such as hard drives and CD-ROM drives. Next is an apple printer and then modem jack and lastly we have a 1/8 stereo audio out jack for connecting headphones or external speakers. Since we are talking about the sound the SE/30 uses an Apple Sound Chip (ASC) including four-voice, wavetable synthesis and stereo sampling generator. The sound coming from the built in internal speaker will be mono but anything through the rear audio jack, wether speakers or headphones will be stereo.

Removing the case reveals the drives and internals.

It is fairly cramped inside but the motherboard is fairly easy to remove as it just slides up and then away. Remember to detach the cables before removing the motherboard though.

The fan header, floppy and SCSI cable and power cable need to be unplugged from the motherboard. Only the power cable may present an issue since it can be a little stubborn and hard to reach. Below the CRT tube is a tray for an optional SCSI hard drive. Generally the SE/30 was sold with either a 40MB or 80MB hard drive installed but the system will take as large as a drive as you can find. I currently have a 300MB hard drive installed. Below the hard drive is a 1.44MB floppy drive.

Above is the motherboard for the SE/30 after being separated from the case. A common point of failure on these boards as with most of the older Macs are the silver surface mounted capacitors. These tend to leak over time but can be replaced with modern equivalents.

1 ) CPU – The CPU is the Motorola 68030 running at 16MHz. This is the same CPU and speed as some of the SE/30’s big brother full sized Macs such as the Macintosh IIx and IIcx. Due to the SE/30’s 32-bit bus it is the fastest of the black and white compact macs being even faster than the Mac classic II which features the same CPU and speed but only ran on a 16-bit bus.

2 ) FPU – One other feature of the SE/30 is the inclusion of an FPU co-processor standard on the motherboard as opposed to being optional. The Motorola 68882 FPU unit helped when performing more complex math functions though like the on the PC I’m not sure it was utilized very often in games. You could argue that an optional FPU socket is a better option since if the FPU fails you can replace it much easier.

3 ) RAM – The SE/30 features eight slots for 30-pin RAM SIMMS. 1MB or seems to of been stock but it’s not unusual to find SE/30’s with 8 to 16MB of memory.

Unofficially the SE/30 can support up to 128MB of RAM using 8 16MB SIMMs. This is a staggering amount of memory for 1989 when this model was released let alone in such a compact machine. I was able to upgrade My SE/30 to 128MB, just be sure to remember afterward to navigate to the memory option in your OS and enable 32-bit memory mode.

4) ROM – The original ROM that came stock with the SE/30 was a 32-bit “dirty” ROM meaning that it still had some 24-bit code. This meant the SE/30 was limited to 8MB of RAM though there was a software solution called Mode32 which allowed 32-bit mode. Both SE/30s I have come across had Mode32 installed and if yours does not the software is freely available with an internet search.

Thankfully the ROM on the SE/30 is not soldered to the motherboard and can be swapped out as easily as if it was a stick of RAM. One way to make your SE/30 32-bit “clean” was to swap the stock ROM out with the ROM from a Macintiosh IIsi or IIfx. For a while I had swapped my ROM with one from a Mac IIsi and it seemed to work fine.

Possibly the best option currently for making your SE/30 32-bit “clean” would be ordering the reasonably priced ROM-inator-II from Bigmessowires. The ROM-inator II is a modern replacement for your SE/30 which makes it 32-bit “clean” but also adds HD20 hard disk support, various utilities and lets your Mac boot to System 7.1 from the ROM.

5 ) PDS slot – The PDS or Processor Direct Slot allowed the SE/30 to accept a number of expansion cards. Something not seen in most of the compact Macs. Various cards such as accelerators and display cards can be added via this slot.

6 ) PRAM battery

7 ) SCSI connector

8 ) floppy connector

9 ) Power connector

10 ) Interrupt and reset buttons

The SE/30 is one of the all time classic Macintosh computers and along with the color classic I and II one of the absolute best compact Macs. The SE/30 has all of the power of a full sized Macintosh II in a much smaller package. With a ROM replacement, a sizable SCSI hard drive and the full 128MB of RAM the SE/30 becomes a monstrous classic Macintosh. The smaller black and white monitor can be a handicap when it comes to games but games designed for the B/W mac look stunning on the monitor and the lack of color even lends itself to the atmosphere of certain games such as the Infocom Macventure series.

re-capped Mac SE/30 motherboard upgraded with ROM-inator II and 128MB of memory

I would highly recommend tracking an SE/30 down if you want a classic compact Mac. You’ll probably never need the 128MB of RAM but I would certainly recommend adding a nice sizable SCSI hard drive or even a SCSI2SD adaptor for storage. I would also highly recommend the very affordable ROM-inator II if only to make your machine 32-bit “clean” and to get that very nice ability to boot from ROM.

SE/30 with external SCSI CD-ROM drive

This slideshow requires JavaScript.

Last time we looked at an HP Vectra it was the Vecta XA. This time we are going to take a look at the slightly older Vectra VL and more specifically the Vectra VL series 3 5/90.

The VL series 3 5/90 that I have is in a desktop form factor. I wouldn’t really call it a small form factor but it isn’t as tall as some desktop cases. The center of the faceplate is removable and mine actually came with it missing. I had to source a new one on eBay. In the center we have a large square power button as well as a power LED and HDD activity LED. to the right of this is one 5 1/4 drive bay and one 3 1/2 inch bay commonly populated by a 1.44mb floppy drive and one CD-ROM drive but obviously these can be substituted by whatever drives will fit. Keep in mind these bays use drive rails to secure the drives.

on the bottom rights and left are two plastic tabs. They secure the case lid which can be removed by clicking these tabs inward and then pulling the case lid forward and up.

One the rear left we have a key lock which on my machine is missing as well as a spot below that appears to be an expansion bay. On some models like the XA a special network card would install here but the card and connector for it is not present on VL. To the right we have five expansion slots and underneath these we have a variety of ports.

From left to right we have a parallel port followed by two serial ports, two PS/2 ports for keyboard and mouse and finally a 15 pin VGA port with a standard three-prong power connector above.

The VL uses the same 100w proprietary form factor power supply as the Vectra XA. This power supply has a fan on the underside which blows directly onto the CPU socket for active cooling.

The expansion slots are all on a riser card coming off the motherboard.

For expansion we have two PCI and three 16-bit ISA slots. It’s a bit anemic with the PCI slots but for a basic setup it’s not to bad considering there is VGA built-in. For my build I decided to add a PCI video card, a Voodoo 1 3D accelerator and an ISA sound card which we will take a quick look at later.

Behind the expansion slots is a metal plate on a hinge that with the removal of a screw opens up and allows the installation of a hard drive.

My Vectra VL did not have a hard drive with it so I installed a spare drive I had lying around and installed DOS 6.22 as well as Windows 3.1 though the machine is capable of running Windows 95 or 98 if you choose to.

And now to take a look at the motherboard with the PSU out of the way.

1) CPU – The Vecta VL uses socket 5 which was a fairly short lived CPU socket from around 1994 before socket 7 came out. Socket 5 officially supports the Pentium 75-120MHz but also supports various AMD K5, IDT and overdrive chips.

As per the model designation (series 3 5/90) the stock CPU was a Pentium 90 though my model came with a 200MHz MMX Pentium Overdrive.

The overdrive chip uses a pin adaptor and a voltage regulator to safely install into and run on a socket 5 motherboard. Since socket 5 motherboards do not support the lower voltages and split voltages of later Pentium CPU’s the voltage regulator on the Overdrive chips is required. The BIOS on my Vectra VL on boot detected the Overdrive as a 133MHz chip but running CPUID confirmed the CPU was running at 200MHz.

I did end up removing this CPU and replacing it with a stock Pentium 90.

2) RAM – The VL has six RAM slots for 72 pin RAM for a maximum of 192MB of memory. Currently I have 160MB installed via four 32MB sticks and two 16MB sticks.

3) L2 Cache – The VL has 256KB of L2 cache soldered directly onto the motherboard.

4) Video – The built-in video is based on the CL-GD5434 chip. The 5434 is a later video chip from Cirrus Logic running on the PCI bus. There is 1MB of video RAM soldered onto the motherboard but it is expandable to 2MB via the “video memory” socket. with the additional 1MB for a total of 2MB the 5434 chip will support 64-bit mode. The GD5434 should be a fairly speedy and compatible video chip for 2D games and applications. There is also a VESA feature connector located next to the VRAM socket.

The switch box located next to the VESA feature connector is used to set various things like memory parity and can change based on your CPU speed.

5)  Power connection – Power connector, CMOS battery and front panel connector

6) Floppy/IDE – One floppy connector and dual IDE connectors for a total of four IDE devices, not that there is really room to install more than a CD drive and single hard drive. Word of warning though, the IDE controller chip is a CMD0640 PCI IDE which is known to corrupt hard drives under certain conditions.

For expansion cards I decided to install an S3 Vision 968 video card with the ram expansion increasing the cards video memory to 4MB. The Vision 968 is the business equivalent of the Trio64 and although it may be a little slower it does support more memory and is said to have a little better image quality. Compared to the on board GD5434 the Vision 968 may actually be a little slower but it does support more memory allowing me to run things at higher resolutions if I choose. Depending on your needs or if you need more free PCI slots you would probably be fine with the on board video.

I also installed a Voodoo 1 3d accelerator card for all those early games that support the Glide API.

The Vectra VL being a more business oriented PC does not have any built in sound so I decided to add an ISA sound card I’ve been wanting to use for a while. The sound card I went with is the Ensoniq Soundscape S-2000.

The S-2000 is Ensoniqs first attempt at a sound card and it’s a pretty successful card. Most late DOS games directly support the Soundscape and it also has built in MIDI capabilities that sound pretty good. The card is sound blaster compatible but does not have a true OPL FM chip so all FM sound is emulated to sometimes less than great effect.  One major plus of the S-2000 is the ability to support intelligent mode when using an external MT-32 MIDI module via the joystick port. This a feature that almost all other sound cards lack.

The Vectra line has always been business oriented and the VL is no exception though with a few additions it can make a capable gaming machine for DOS titles or early Windows. Personally I feel like a socket 7 and up machine is better suited for Windows 9x but for late DOS a socket 5 build like the VL is more than capable. The proprietary power supply, limited BIOS options use of the always annoying rails and limited expansion bays does make the VL less than ideal but it can make a serviceable PC in a smaller form factor if you at least add a sound card and possibly a video card depending on your needs.

I’m a huge fan of the Amiga line of computers and I own most of the various models released during its time in the sun. The Amiga 2000 (I’ll refer to it as the A2000 from here on out) eluded me for years though. Finally, a few years back I was able to acquire an A2000 which is what I will be showing you in today’s article.

The A2000 released in 1987 is basically an Amiga 500 placed in a desktop case with expansion ports. Now keep in mind that is a bit of a simplification but the 2000 and 500 use mostly the same chipset and devices that are compatible with the A500 will generally work with the A2000. Also, keep in mind that there were some variations of the A2000 such as the A2000HD, A1500 and the A2500 which are more or less A2000’s with different stock options. The A2000 was mostly marketed as an Amiga for the professional or business market where the A500 was seen as more of a consumer level product.

I’d say the front of the A2000 is pretty unremarkable and looks like a rather bland standard PC case. On the left side of the case are two LED lights labeled power and hard disk. The standard A2000 actually did not come with a hard drive through the A2000/HD did come with one standard via a 2090 controller card and SCSI drive. My A2000 here was upgraded with an HD which we will look at later. There is room for two 3 1/2 drives as well as one 5 1/4 bay. A2000’s came standard with only a single 880KB double density floppy drive as we can see on mine.

Beneath the drive bays are a 5-pin AT style keyboard port as well as dual DE-9 ports. I have a converter in my A2000’s keyboard port so I can use my Amiga 4000 keyboard as I lack an original A2000 keyboard. For the DE-9 ports I generally attach an Amiga mouse as well as a nice Wilco Commander joystick.

Here is the rear of the A2000. I did remove one of the metal slot covers and currently have a power lead as well as the floppy cable coming out of the back. I will explain that later in the article but for now let’s just ignore it. Let’s take a look at the conveniently labeled various ports below the power supply and the standard 3 prong power connector.

Starting on the left we have a DB-23M analog RGB video out connector for attaching your Amiga to a compatible RGB monitor. Next we have a parallel port as labeled followed by a port to attach an external floppy disk drive. Next we have three RCA A/V out ports. The first of these ports is a mono composite out jack. Keep in mind this port only outputs a composite video signal in black and white. The reason for the black and white output as opposed to color is the A2000’s intended primary market being business professionals. In the mid 1980’s many businesses were still using monochrome monitors for the mostly text based work and the feeling was that color composite would largely be wasted on the A2000. The video out is followed by dual left and right stereo audio out jacks. Lastly we have an RS-232 serial port.

Removing the cover reveals the power supply as well as drive bays and my two currently installed expansion cards which we will talk about a little later.

Removing the power supply, drive bays and expansion cards reveal the motherboard of the Amiga 2000. I have a revision 6 motherboard in my Amiga, other revisions of the board may vary somewhat.

1) CPU – The CPU of the A2000 is the Motorola 68000 at 7.16MHz. This is the same CPU and speed as the best selling little brother of the A2000, the Amiga 500. The CPU is socketed and can be replaced with a Motorola 68010. The 68010 offers a small speed boost though the exact amount seems to vary by the source. I’ve read the boost can be anywhere from a negligible 2% all the way to 10%. The 68010 was also popular with users of the WHDload program as it allowed escaping from games without restarting though later versions of the program are said to of fixed this issue allowing closing out games even on the original 68000. Replacing the CPU with the 68010 was also known to cause a small amount of incompatibility with games and generally was not worth the small speed bump.

2) ROM chip – Depending on your model of A2000 the ROM chip could vary but they generally came with a 256k or 512k ROM chip. The kickstart chip determined what Amiga OS could run among many other things. My A2000 came with a V2.04 512k ROM. These ROM chips are also socketed and can be replaced with older ROMs (for compatibility) or newer ROM chips depending on your needs. There are even dual ROM chips that allow users to choose if they would like the machine to boot up using an older or newer ROM version.

3) Agnus chip – The Agnus chip is a part of the Amiga’s custom chipset which allowed for many of the Amigas advanced features for the time. Agnus was responsible for a variety of tasks such as acting as a memory controller, system clock generator, DMA controller and many other tasks. This chip will vary depending on your Amiga 2000. My Agnus is the 8372A “Fat Agnus” which is a 1MB chip and a part of the ECS chipset (discussed later). This version of Agnus can address up to 1MB of chip RAM but earlier versions only supported up to 512MB of chip RAM. There are also later 2MB versions of this chip which usually are found in Amiga 3000 and 600’s. From what I’ve read you can upgrade this chip on an A2000 to a 2MB “Super Fat Agnus” but most methods seem to require some modding which includes soldering.

4) Gary, Paula, Denise chips – These three chips make up the bulk of the Amiga’s custom chipset and each chip helps to control various aspects of the computer’s functionality. Without getting super technical we will go over the basic functions of these chips.

Gary – System address decoder

Paula – Audio and I/O controller

Denise – Display encoder

My Amiga came with a “Super Denise” chip installed and with the previous “Fat Agnus” chip give my A2000 the ECS chipset or Enhanced chip set. Earlier A2000’s came with the older OCS or Original Chip Set. The ECS only offers fairly minor upgrades over the OCS such as the ability to address more chip RAM, allow for a few higher resolution modes and allowed software switching between 50 Hz PAL and 60 Hz NTSC modes.

5) RAM – My A2000 is a rev 6 motherboard and came with a full 1MB of “chip RAM” soldered onto the motherboard. Amiga chip RAM is shared between the CPU and the custom chipset while Amiga “fast RAM” is assessable only by the CPU. Earlier A2000s usually shipped with 512k of chip RAM and 512k of fast RAM. Some programs do specifically require a full 1MB of chip RAM while fast RAM is relatively easily addable via the Zorro expansion slot cards. 

6) Floppy drive controller chips

7) Buster chip – The Buster chip (the large vertically positioned chip on the right side of the image below) is another of the Amiga’s custom chips. “Buster” is the DMA arbitrary controller. To the left of the Buster chip and below the power connector are two internal connectors for the floppy header and an internal serial header.

8) Expansion slots – The expansion slots on the A2000 are interesting in that they include several mostly unused PC ISA slots alongside the five proprietary Amiga ZORRO II slots.

The five Zorro II slots support a large variety of Amiga expansion cards and support bus mastering DMA as well as an autoconfig protocol similar to “plug and play”. The ISA slots can only become active by the use of a bridgeboard.

Processor Card Slot – sitting away from the Zorro II slots and next to the CPU chip is a short slot resembling an 8-bit ISA slot. This is the Processor Card Slot.

With this slot you could add various CPU accelerator cards, some featuring co-processors, memory, ect.

9) Power connector

10) Video slot – This slot is used to add various video cards such as Genlock cards, deinterlacers or the “Video Toaster” card. It wouldn’t be correct to think of this in the terms of a PC where you could add better video cards to assist in gaming as this slot was meant for cards that assisted in things like video editing and effects.

11) CMOS battery – This is the internal CMOS barrel battery for saving time/date information. Mine was removed some time ago. This can be modded for a coin style battery.

My A2000 came with two Zorro expansion cards installed by the previous owner.

The first card is just a dual serial port card that adds two additional serial ports to the Amiga.

The second expansion card is much more interesting and useful.

The second card is a GVP A4008. The GVP A4008 is a pretty nice Zorro II SCSI controller card (50 pin SCSI header) and also allows the adding of up to 8MB of “fast RAM” to the Amiga. This is not the HDD controller card that came stock in A2000/HD units but it effectively turns this Amiga into a 2000/HD as well as allowing extra RAM. My card came with a 50MB SCSI drive and 2MB of RAM. I believe my A2000 formerly belonged to a Krogers grocery store as on booting up from the hard drive the machine loads up what appears to be grocery store advertisements. I have since upgraded the hard drive to a 2GB SD card via a SCSI2SD adaptor and have also maxed out the RAM to 8MB.

UPGRADES

Other than replacing the hard drive with an SD card and upping the amount of fast ram to 8MB I have also performed a few other upgrades to the A2000.

Floppy Emulator drive.

In my experience Amiga floppy disks seem to fail much more common than the PC variety. Thankfully there are answers to this problem in the form of programs like WHDload which lets you install games to a hard drive as well as floppy drive emulators which allow the use of USB flash drives to act as floppy disks. Unfortunately I feel that adding these emulator drives ruins the classic look of the machines. On something like an Amiga 500 where the disk drive is on the side of the machine this isn’t so bad but on a forward facing A2000 it’s just kind of hideous in my opinion.

Because of this I have opted for an external floppy drive emulator. It’s still not the most elegant solution but it maintains the classic look of my A2000. To achieve this I currently have the actual floppy drive in my Amiga disconnected and rerouted the floppy cable out of the back of the Amiga to the emulator. There are mods available that allow you to add a switch to change the main floppy drive to the external floppy port but I haven’t had much luck with these mods.

Next I have replaced my original ROM chip with a dual kickstart ROM that allows me to choose kickstarts via a switch.

The ROM is dual KS 1.3 and 3.1 thus I can use it to take advantage of the enhanced features that KS 3.1 provides while retaining the ability to drop back to KS 1.3 to maintain compatibility with some older games and programs.

The Amiga 2000 is one of my favorite Amiga’s as it shares most of the same specs as the ubiquitous Amiga 500. It retains a very high level of compatibility with games while at the same time it allows for both more and easier expansion options such as adding more memory and things like hard drive and CD drives. Like most Amigas the A2000 can be hard to come by as well as demand a premium.

(right-clicking on any image and choosing “view image” will enlarge image)

Todays article we will be looking at the short lived Apple eMate 300. Apple’s late 90’s attempt to fuse the Newton PDA and laptop.

I won’t be taking this unit apart mostly for the reason of I do not actually own this machine and I’m borrowing it, thus I don’t want to risk accidentally damaging it seeing as I’m not very familiar with laptops and such nor do they particularly interest me. that said I didn’t want to pass up an opportunity to feature this interesting and kind of rare machine.

The eMate 300 was briefly sold for less then a year between 1997 and 1998, mostly to the educational market.

The eMate 300 comes in an all translucent green case and If I’m not mistaken is the first Apple computer to use the colored plastic motif that the later iMacs became so well known for. The plastic has actually held up fairly well over time and did not seem brittle to me.

Another thing you may notice is the eMate 300 kind of looks like a butt in tight green spandex. I’ve also been told it looks like a bust line, just the image you want to evoke for a device meant for the educational market…

Lets take a quick look at the specs for the eMate. The screen is a 480×320 resolution grayscale that operates as a touch screen with the use of the stylus. It does have a backlight that can be toggled on and off via a button on the keyboard and sort of resembles the look of the screen on the original Gameboy with the green soup look although the eMate screen does look much better.

There are some nice touches like the holes to place your stylus on either side of the eMates keyboard.

The CPU is a 25MHz ARM 710a RISC processor and the machine comes with 3MB of RAM standard. In a world with several hundred Megahertz Pentium and K6 CPU’s this feels like an extremely underpowered processor in 97/98 but remembering this was not meant to be an actual laptop but a beefed up PDA the power is acceptable for most tasks as far as I could see. Under the battery door there is an expansion slot that did make the RAM expandable via third party cards. There is also a headphone jack and PCMCIA slot on one side so adding things such as wireless and flash memory is possible.

On the opposite side of the eMate is a small sliding panel door that acts as a cover for Macintosh serial/localtalk ports.

Unfortunately I don’t have much else to say about the eMate. It seems like it was a good idea at the time but it never really caught on and sold very well. You could also at the same time buy the more traditional looking Apple Messagepad 2000 which was a more powerful and expandable PDF device.

As far as I know there are no games for the eMate 300 which makes sense as that was not it’s intended use nor does it even sport USB ports or floppy and/or CD drives to help facilitate such things. I did have some fun just mucking around on it. There are some neat features like the art program which lets you draw free form shapes and then the eMate sort of fixes them up. For instance I could draw a rough circle or triangle and the eMate would then adjust my hand drawn shapes to perfect circles and triangles. It was also neat to hand write sentences and then have the eMate transfer the hand written notes into text, although it didn’t always get things right.

Again, The eMate is a neat and pretty rare piece of Apple and computing history but it isn’t really my personnel cup of tea.

(right-clicking on any image and choosing “view image” will enlarge image)

I’ve always liked the Vectra line. I don’t exactly know why as I never owned one and they tended to be meant for more of the business side of computing then gaming or home use but none the less I still always kind of had a soft spot for the series.

Today we are going to look at the HP Vectra XA, a decidedly business oriented model that still can make a great retro PC with some slight tweaking.

On the far right of the Vectra XA we have one 5 1/2 expansion bay as well as two 3 1/2 bays. The bays though are a little different in that the two 3 1/2 bays sandwich the single 5 1/4 bay. The dual 3 1/2 bays also are not centered like you see in most cases but are in these sort of extended bays with plastic tabs covering the unused portion. It almost looks like if you removed everything you could turn it into a dual 5 1/4 bay but that doesn’t really work. These bays also use rails to secure the drives, yuk.

In the center we have a removable plate (when the case is open) which has our buttons and LED lights. starting on the top left we have a power button followed by a reset button and finally we have a “lock” button. This button when pressed would suspend the system until you entered a passcode. Handy if you were walking away from your desk and didn’t want nosy coworkers, children or perhaps spouses poking around. Mine didn’t seem to work which is probably for the best since I don’t have a passcode. There may be an option in the BIOS to enable this feature though I didn’t see it when I quickly checked.

Below this we have a hard drive activity light as well as a LAN network activity light. Some models came with an audio board and had audio jacks and volume controls on the under the LED lights but mine did not.

On the back starting on the left we have a security lock and under that a special built-in network card featuring a 10T and 100T Ethernet jacks.

Here is a look at that card installed from the side.

To the right of the Ethernet card we have four expansion slots and several clearly labeled built-in I/O ports. We have a parallel printer port as well as a single USB 1.1 port sandwiched between two serial ports. Finally we have dual PS/2 ports for mouse and keyboard. There is an option in the BIOS for this model to power on via pressing the space bar on the keyboard but I couldn’t get it to work on my machine even with the BIOS option enabled. A specific HP keyboard may be required for this function to work.

removing the top to the case is fairly simple and only involves sliding these plastic tabs located on the bottom front of the case.

After this just pull the case lid forward and up to remove.

Here we see the XA with the top of the case removed.

The hard drive is located behind the front drive bays and is secured upside down to a metal bracket hanging over the network card. The hard drive installed in my XA was a 1.6GB Quantum Fireball.

Now let’s take a look at the motherboard with all those expansion cards out of the way.

1 ) CPU – The Vectra XA uses a socket 7 motherboard. Mine came with an Intel 166MHz MMX CPU installed.

The 166MHz Pentium is a classic CPU and perfect for early Windows and late DOS retro machines. The XA should be able to support every CPU from the Intel 75 up to the 233 MMX as well as Cyrix and AMD equivalents. There is no fan on the heatsink since the CPU gets its active cooling from a fan located on the power supply. We will take a closer look at this later.

2 ) Voltage Regulator – It was pretty common for motherboards of this era to have voltage regulator modules. Rather than having the voltage regulator soldered onto the board it was sometimes on a removable module. In theory you could replace the module much easier if it should fail or even swap it out for one that supported different voltages. They tend to be pretty difficult to come across these days.

3 ) Cache Module – Located between the main system RAM and the CPU, the XA uses a pipeline burst COASt module or Cache On A Stick to provide level 2 cache memory. The cache stick in my XA is a 512kb module though a 256kb can be swapped in if you wanted to for some reason.

4 ) RAM – The XA has six 72-pin RAM slots accepting a total of 192MB of RAM. My PC came with 48MB installed

5 ) CMOS battery and switch box – The CMOS battery for the Vectra XA is a BR2325 coin battery as opposed to the more common CR2032 batteries most motherboards tend to use. The BR is slightly larger than the CR and there are some differences as far as battery life but that is beyond the scope of this article.

The switch is mostly used for setting the front side bus and CPU frequency.

6 ) Power supply – The XA power supply is a fairly low power 100w proprietary form factor power supply. To make it even worse the board requires an AUX power connector from the supply and a specifically positioned fan on the underside of the power supply is used to cool the CPU heatsink.

Replacements can be found on eBay but the asking price of these is usually more then what one is likely to purchase the computer for.

Next to the main AT power connector is a floppy drive connector and dual EIDE connectors for attaching hard drives, CD-ROM drives, ect.

Video – The XA does not have built-in video but it did come standard with a discrete PCI Matrox Millenium video card. This card makes sense seeing as the Vectra XA was aimed at business. The Millenium offers excellent image quality for the time. For gaming is offers fast speeds and decent compatibility.

Sound – The sound card that came with my XA is a Sound Blaster 16 with the Vibra16S sound chip. In my opinion the Vibra cards are a little less noisy then early SB cards but they may not sound quite the same. This card also does not have a true FM OPL chip but instead uses a CQM synthesis chip for FM.

The final card that came installed with my XA is some kind of HP branded interface card with an HP-IB aka IEEE-488 interface.

The HP Vectra XA is a pretty decent socket 7 machine and is fairly easily customizable for your retro needs. It can make a great retro game rig with the right video and sound cards. I’d of preferred two 5 1/4 expansion bays as opposed to one and the two 3 1/2 bays but that’s a minor gripe. The biggest weakness of the XA in my opinion (and most of the Vectra line of this period) is the proprietary form factor of the power supply. If your supply dies it does make things a little more difficult as far as replacements go.

(right-clicking on any image and choosing “view image” will enlarge image)

We’ve seen a lot of PC’s on this blog over the years from companies that you normally would not associate with the computer market attempting to get a slice of that yummy yummy PC market pie. Today we’re going to take a look at one from the Korean car manufacturer Hyundai.

Hyundai is mostly known for cars, at least here in the USA, but like so many others they actually had a line of IBM PC compatibles. Today we will be taking a look at one PC out of that line, the Super-16 Turbo. You may make the assumption like I did that this is going to be a 16MHz 286 based machine, but nope. The Super-16 Turbo is a completely bland, middle of the road but reliable and functional 8088 PC.

My Super-16 Turbo here has some uneven yellowing going on with the left side being noticeably darker than the right. The front of the PC is pretty bare bones. We just have the Hyundai badge on the left and duel 5 1/4 bays to the right. My machine came with a single 360KB 5 1/4 inch floppy drive (The original drive i’m told was also a 360KB drive but was belt driven and had a round LED) as well as a 30MB MFM hard drive mounted in the lower bay.

Completing the front face of the PC is a large block of a power button and a power LED light.

A PC style keyboard connector is located on the right side of the machine.

The rear of the Super-16 is pretty sparse mirroring the front. We do get a nice power pass though for a monitor which is always nice but as far as built in ports go all we get is a RS-232C serial port as well as a printer port. To the right are six slots for expansion cards.

The top of the case comes off after unscrewing two screws on each side as well as one screw on the rear of the case.

Here we have the motherboard with the expansion cards removed.

1 ) CPU – The CPU is a P8088-2 running at 8MHz though I’ve seen variations of this PC that used an 8088-1 at 10MHz. This is pretty fast for an 8088 CPU and allows some more versatility when playing some later CGA titles or titles that may chug just a bit at 4.77MHz. The problem with the Super-16 Turbo is that there does not seem to be a turbo button to switch CPU speeds between 4.77MHz and 8MHz nor can I find a keyboard command to switch between speeds. There is a DIP switch setting though on the large blue switch located on the motherboard to choose between speeds but unless your playing with the case off this is extremely inconvenient. I’ve been told by a user of this machine that originally the machine came with a TURBO.EXE program and hitting Ctrl+Alt+Enter on the keyboard would toggle speeds.

If there is a way to switch speeds with the cover on and I’m just not seeing it that makes the Super-16 Turbo a pretty nice XT PC as far as versatility goes with those old CGA games but if the only way to change speeds is the internal switch then that really handicaps the Super-16 as you have to choose between being more compatible with very early games or not.

Another big downside with this PC and a hallmark of cheapness is that the CPU is soldered onto the board. That means without removing the motherboard and desoldering the old CPU you can not swap the CPU for a faster 8088-1 or NEC V20 or easily change CPU’s in case yours fails.

Next to the CPU is an empty socket so you can add an 8087 math co-processor if desired though these rarely add much benefit on an XT class PC outside of a few select games and CAD software.

2 ) RAM – The Super-16 Turbo comes stock with 640KB soldered onto the motherboard. This is nice but by the time this machine came out this was standard. You can, of course, add more memory via an 8-bit ISA expansion card though even with an 8MHz 8088 your really not going to be playing any games that really require that much memory or at least not playing any that run all that ideally.

The motherboard itself is fairly compact for an XT board and has six expansion slots which should be enough for most XT class user’s needs. The floppy controller is built into the motherboard freeing up a potential expansion slot and there is a real cone speaker although its located sort of awkwardly in the center of the case further to the rear.

 

I do like that the CMOS battery on this board is a coin battery rather than a barrel one which not only makes it a little easier to replace but has less chance of leaking on your board and destroying components over time.

The large blue switch to the right of the battery sets things like your CPU speed, whether you have a math co-processor installed and video mode. You can find a layout of the motherboard as well as the switch settings Here.

Let’s take a quick look at the two expansions cards that came with my Super-16 Turbo PC

The first card was an 8-bit MFM hard disk controller from WDC which was attached to my PC’s 30MB ST-238R hard drive. On boot, the hard drive did in fact spin up but the machine would not boot from the HDD. If I booted from a floppy disk into DOS I was able to access the hard drive so maybe this drive was just used to store data and not set up as a bootable drive on my machine.

The second card installed was the video card.

The video card is a 64KB ATI Graphics Solution Plus 8-bit CGA card. This is an earlier card but like most of ATI’s video cards is supports Plantronics and Hercules graphics modes along with standard CGA modes. There is no color composite jack on this card though I see some headers on the top of the card near the video output which may allow one to connect a dongle.

The Hyundai Super-16 Turbo seemed to of been released in the latter half of the 1980s as a sort of budget machine competing against more capable but also more expansive 286 and even 386 PCs. Reading a few Computer magazine articles of the time that mention the Super-16 seems to paint it as a no thrills but reliable PC and thats mostly the impression I get. Corners were obviously cut on this machine and it does have a sort of boring utilitarian feel about it but it also does seem to be pretty reliable overall.

There isn’t a whole lot of bells and whistles built into this PC. The CPU is soldered to the board and the fact that you seemingly cannot switch CPU speeds without opening the case is a real pain but at the time if you just wanted a basic and cheap PC for the home that just worked I guess this would have been a nice compact choice. As a retro gaming PC though, if you find one cheap and don’t have a PC of this era go ahead and pick it up but otherwise there are more versatile PC’s of this era out there.

FDISKformat

A place for the pc collector

I ❤ Old Games!

Probabilmente il miglior blog bilingue al mondo*

Waltorious Writes About Games

Game-related ramblings.

NekoJonez's Gaming Blog

My Gaming Timeline

Evelynn Star

Lynn talks about video games, records and books ...

Retro Megabit

Sharing My Retro Video Game Collection.

133MHz's Junk Box

Random electronics and gaming crap

SNES A Day

Chronogaming project featuring reviews, screenshots, and videos of the entire Super Nintendo library in release order.

Retrocosm's Vintage Computing, Tech & Scale RC Blog

Random mutterings on retro computing, old technology, some new, plus radio controlled scale modelling.

The PewPew Diaries.

Work(s) in Progress!

1001Up

1001 video games and beyond

retro computing and gaming plus a little more

sparcie

retro computers and stuff

jispylicious

Stay Jispy!

%d bloggers like this: